• 设为首页
  • 加入收藏
  • 联系邮箱
  • 网站首页
  • 期刊介绍
    • 期刊简介
    • 历任主编
    • 期刊荣誉
  • 编委会
    • 社长及主编
    • 主任委员
    • 编委名单
  • 投稿指南
    • 作者须知
    • 投稿步骤
    • 范文(规范细则)
    • 稿件处理流程
    • 著作权转让协议
  • 期刊影响力
  • 开放获取
  • 出版道德政策
    • 出版伦理声明
    • 学术不端认定和处理方法
    • 广告及市场推广
    • 同行评议流程
    • 斟误和撤回
    • 回避制度
    • 文章署名及版权转让
  • 历年目次
  • 联系我们
  • English
站内检索    
 
曲朝阳,计超.基于传递函数自我优化的BP网络算法改进[J].电测与仪表,2014,51(11):.
quzhaoyang,jichao.BP neural network algorithm improvement based on transfer function self-optimization[J].Electrical Measurement & Instrumentation,2014,51(11):.
基于传递函数自我优化的BP网络算法改进
BP neural network algorithm improvement based on transfer function self-optimization
DOI:
中文关键词:  传递函数自我优化  神经网络  风电功率预测  BP算法
英文关键词:transfer  function self-optimization,neural  network,wind  power rediction,BP  algorihtm
基金项目:国家自然科学基金资助项目(51277023) 国家自然科学基金资助项目(51077010) 吉林省科技发展计划重点支撑项目(20120338)
     
作者中文名作者英文名单位
曲朝阳quzhaoyang东北电力大学信息工程学院
计超jichao东北电力大学信息工程学院
摘要点击次数: 1561
中文摘要:
      目前使用比较普遍的优化方法对BP算法改进之后,改进的BP神经网络预测过程都存在复杂程度变大、更加消耗人力资源等缺陷。针对这些缺陷,本文提出一种传递函数自我优化算法来改进神经网络。然后将改进的网络应用到风电功率预测中,以东北某风电场一段时间的风电运行数据作为实验样本,分别采用传统BP神经网络和改进的BP神经网络进行预测分析。仿真结果证明,改进之后的BP神经网络不仅有更快的收敛速度,还有更加精确的预测结果,并且不需要认为干预整个预测过程。极大提高了网络的预测能力和效率。
英文摘要:
      Now after using common optimization to improve the BP algorithm,the improved BP neural network almost become very complex and consume more human resources during the prediction process.To solve these shortcomings,this paper presents a transfer function self-optimization algorithm to improve the neural network,then apply the improved network to wind power prediction.Take a period time of operating data in a northeast wind farm as the experimental samples to analyze prddiction outcomes by using both traditional and improved BP neural network.Prediction results show that the improved BP neural network not only enhances the convergence reat,but also prediction accuracy.
查看全文  查看/发表评论  下载PDF阅读器
关闭
  • 哈尔滨电工仪表研究所有限公司
  • 中国电工仪器仪表信息网
  • 中国仪器仪表学会
  • 中华人民共和国新闻出版总署
  • 中国科技期刊编辑学会
  • 黑龙江省科学技术协会
  • 编辑之家
  • 中国知网
  • 万方数据库
  • 维普网
  • 北极星电力网
  • 中华中控网
  • 网站首页
  • 期刊介绍
    • 期刊简介
    • 历任主编
    • 期刊荣誉
  • 编委会
    • 社长及主编
    • 主任委员
    • 编委名单
  • 投稿指南
    • 作者须知
    • 投稿步骤
    • 范文(规范细则)
    • 稿件处理流程
    • 著作权转让协议
  • 期刊影响力
  • 开放获取
  • 出版道德政策
    • 出版伦理声明
    • 学术不端认定和处理方法
    • 广告及市场推广
    • 同行评议流程
    • 斟误和撤回
    • 回避制度
    • 文章署名及版权转让
  • 历年目次
  • 联系我们
地址:哈尔滨市松北区创新路2000号    邮编:150028
邮箱:dcyb@vip.163.com    电话:0451-86611021;87186023
© 2012 电测与仪表    哈公网监备2301003445号
黑ICP备11006624号-1
技术支持:北京勤云科技发展有限公司