• 设为首页
  • 加入收藏
  • 联系邮箱
  • 网站首页
  • 期刊介绍
    • 期刊简介
    • 历任主编
    • 期刊荣誉
  • 编委会
    • 社长及主编
    • 主任委员
    • 编委名单
  • 投稿指南
    • 作者须知
    • 投稿步骤
    • 范文(规范细则)
    • 稿件处理流程
    • 著作权转让协议
  • 期刊影响力
  • 开放获取
  • 出版道德政策
    • 出版伦理声明
    • 学术不端认定和处理方法
    • 广告及市场推广
    • 同行评议流程
    • 斟误和撤回
    • 回避制度
    • 文章署名及版权转让
  • 历年目次
  • 联系我们
  • English
站内检索    
 
何樱,华征,侯智剑,王召盟.类均值核主元法在GIS局部放电模式识别中的应用研究[J].电测与仪表,2016,53(2):.
He Ying,Hua Zheng,Hou Zhijian,wang zhaomeng.GIS Partial Discharge Pattern Recognition Research Based on Class Kernel Mean Principal Component Analysis[J].Electrical Measurement & Instrumentation,2016,53(2):.
类均值核主元法在GIS局部放电模式识别中的应用研究
GIS Partial Discharge Pattern Recognition Research Based on Class Kernel Mean Principal Component Analysis
DOI:
中文关键词:  气体绝缘组合电器  局部放电  信息无损降维  特征提取  模式识别
英文关键词:gas insulated switchgear  partial discharge  non-information loss dimension reduction  feature extraction  pattern recognition
基金项目:国家高技术研究发展计划(863 计划)资助项目(2011AA05A121)
           
作者中文名作者英文名单位
何樱He Ying中国电力科学研究院武汉分院
华征Hua Zheng华北电力大学河北省输变电设备安全防御重点实验室
侯智剑Hou Zhijian华北电力大学河北省输变电设备安全防御重点实验室
王召盟wang zhaomeng华北电力大学河北省输变电设备安全防御重点实验室
摘要点击次数: 1854
中文摘要:
      GIS局部放电的模式识别对于评估其运行状态、确定检修策略具有重要意义。论文设计了4种典型的GIS局部放电模型,并通过实验建立了相应的局部放电超高频信号图谱数据库,然后根据信号特点提取了原始特征量,由于原始特征量维数较高,不利于模式识别,因此论文引入类均值核主元分析法,首先求出各类映射数据的类均值矢量,然后根据建立的类均值核矩阵建立类均值核主元算法。研究结果表明,该方法得到的特征量涵盖原始样本中的全部信息,并且维数低于绝缘缺陷种类数,能够实现信息的无损降维。
英文摘要:
      GIS partial discharge pattern recognition is an important part of its state evaluation, author has designed four kinds of typical partial discharge models in laboratory, then established corresponding UHF signal mapping database through the experimental method, and also extracted the original feature parameters; because the original characteristic dimension is high, which is bad for pattern recognition, based on this, the article uses a species mean kernel principal component analysis method, it mapped the partial discharge original data samples to high-dimensional feature space, at first,it calculate all kinds of class mean vector data, and then build the class average kernel matrix, at last,the class kernel mean principal component analysis algorithm is established. Results show that characteristic of this method contained all the information of the original data, and dimension is less than GIS insulation defect category numbers, and it can realize data dimension reduction without information loss, which improve the pattern recognition rate.
查看全文  查看/发表评论  下载PDF阅读器
关闭
  • 哈尔滨电工仪表研究所有限公司
  • 中国电工仪器仪表信息网
  • 中国仪器仪表学会
  • 中华人民共和国新闻出版总署
  • 中国科技期刊编辑学会
  • 黑龙江省科学技术协会
  • 编辑之家
  • 中国知网
  • 万方数据库
  • 维普网
  • 北极星电力网
  • 中华中控网
  • 网站首页
  • 期刊介绍
    • 期刊简介
    • 历任主编
    • 期刊荣誉
  • 编委会
    • 社长及主编
    • 主任委员
    • 编委名单
  • 投稿指南
    • 作者须知
    • 投稿步骤
    • 范文(规范细则)
    • 稿件处理流程
    • 著作权转让协议
  • 期刊影响力
  • 开放获取
  • 出版道德政策
    • 出版伦理声明
    • 学术不端认定和处理方法
    • 广告及市场推广
    • 同行评议流程
    • 斟误和撤回
    • 回避制度
    • 文章署名及版权转让
  • 历年目次
  • 联系我们
地址:哈尔滨市松北区创新路2000号    邮编:150028
邮箱:dcyb@vip.163.com    电话:0451-86611021;87186023
© 2012 电测与仪表    哈公网监备2301003445号
黑ICP备11006624号-1
技术支持:北京勤云科技发展有限公司