• 设为首页
  • 加入收藏
  • 联系邮箱
  • 网站首页
  • 期刊介绍
    • 期刊简介
    • 历任主编
    • 期刊荣誉
  • 编委会
    • 社长及主编
    • 主任委员
    • 编委名单
  • 投稿指南
    • 作者须知
    • 投稿步骤
    • 范文(规范细则)
    • 稿件处理流程
    • 著作权转让协议
  • 期刊影响力
  • 开放获取
  • 出版道德政策
    • 出版伦理声明
    • 学术不端认定和处理方法
    • 广告及市场推广
    • 同行评议流程
    • 斟误和撤回
    • 回避制度
    • 文章署名及版权转让
  • 历年目次
  • 联系我们
  • English
站内检索    
 
徐磊,杨秀,张美霞.基于数据挖掘的工业用户用电行为分析[J].电测与仪表,2017,54(16):.
XU Lei,YANG Xiu,ZHANG Meixia.Industrial Users of Electricity Behavior Analysis Based on Data Mining[J].Electrical Measurement & Instrumentation,2017,54(16):.
基于数据挖掘的工业用户用电行为分析
Industrial Users of Electricity Behavior Analysis Based on Data Mining
DOI:
中文关键词:  工业用户  K-means聚类算法  初始聚类数  初始聚类中心  用电模式提取  用电行为分析
英文关键词:Industrial users  K-means algorithm  initial cluster numbers  initial cluster centers  electricity pattern extraction  electricity behavior analysis
基金项目:国家电网公司科技项目资助(520940150010; 52094015001L)
        
作者中文名作者英文名单位
徐磊XU Lei上海电力学院电气工程学院
杨秀YANG Xiu上海电力学院电气工程学院
张美霞ZHANG Meixia上海电力学院电气工程学院
摘要点击次数: 2460
中文摘要:
      本文以上海市部分地区工业用户为研究对象,利用数据挖掘技术分析其用电行为。根据用户档案采集和整合用电数据,同时对数据进行修复和归一化预处理;综合考虑聚类数的确定及初始聚类中心的选择这两个因素,对K-means算法进行优化;利用优化的算法对用户负荷曲线分类并提取特征曲线,分析其用电行为典型特征,并与传统的K-means算法进行比较,同时引入相关指标检验聚类效果。结果表明,采用优化的K-means聚类算法能准确实现不同用户类型的分类识别功能,可以更加准确有效的进行用户用电行为的分析。
英文摘要:
      In this paper, the Shanghai industrial users in some areas is studied using data mining techniques to analyze its behavior of electricity. According to user profile data acquisition and integration of electricity data, the data is repaired and normalized. Considering two factors that the number of clusters and selection of the initial cluster centers to improve the K-means algorithm, the improved K-means algorithm is used in data classification to extract all types of users clustering characteristic curve,then analyze the typical characteristics of behavior of electricity, and compared with the traditional K-means algorithm and relevant indicators is introduced to test clustering effect. The results show that improved K-means clustering algorithm can realize the different types of user classification function and can be more accurately and effectively analyze the behavior of users of electricity .
查看全文  查看/发表评论  下载PDF阅读器
关闭
  • 哈尔滨电工仪表研究所有限公司
  • 中国电工仪器仪表信息网
  • 中国仪器仪表学会
  • 中华人民共和国新闻出版总署
  • 中国科技期刊编辑学会
  • 黑龙江省科学技术协会
  • 编辑之家
  • 中国知网
  • 万方数据库
  • 维普网
  • 北极星电力网
  • 中华中控网
  • 网站首页
  • 期刊介绍
    • 期刊简介
    • 历任主编
    • 期刊荣誉
  • 编委会
    • 社长及主编
    • 主任委员
    • 编委名单
  • 投稿指南
    • 作者须知
    • 投稿步骤
    • 范文(规范细则)
    • 稿件处理流程
    • 著作权转让协议
  • 期刊影响力
  • 开放获取
  • 出版道德政策
    • 出版伦理声明
    • 学术不端认定和处理方法
    • 广告及市场推广
    • 同行评议流程
    • 斟误和撤回
    • 回避制度
    • 文章署名及版权转让
  • 历年目次
  • 联系我们
地址:哈尔滨市松北区创新路2000号    邮编:150028
邮箱:dcyb@vip.163.com    电话:0451-86611021;87186023
© 2012 电测与仪表    哈公网监备2301003445号
黑ICP备11006624号-1
技术支持:北京勤云科技发展有限公司