• 设为首页
  • 加入收藏
  • 联系邮箱
  • 网站首页
  • 期刊介绍
    • 期刊简介
    • 历任主编
    • 期刊荣誉
  • 编委会
    • 社长及主编
    • 主任委员
    • 编委名单
  • 投稿指南
    • 作者须知
    • 投稿步骤
    • 范文(规范细则)
    • 稿件处理流程
    • 著作权转让协议
  • 期刊影响力
  • 开放获取
  • 出版道德政策
    • 出版伦理声明
    • 学术不端认定和处理方法
    • 广告及市场推广
    • 同行评议流程
    • 斟误和撤回
    • 回避制度
    • 文章署名及版权转让
  • 历年目次
  • 联系我们
  • English
站内检索    
 
黄元生,胡建军,蔡雅倩.基于耦合GPR-PSO的北京地区中长期电力需求预测[J].电测与仪表,2020,57(2):74-80.
huangyuansheng,hujianjun,caiyaqian.Medium and long-term power demand forecasting in Beijing based on coupled GPR-PSO[J].Electrical Measurement & Instrumentation,2020,57(2):74-80.
基于耦合GPR-PSO的北京地区中长期电力需求预测
Medium and long-term power demand forecasting in Beijing based on coupled GPR-PSO
DOI:10.19753/j.issn1001-1390.2020.02.012
中文关键词:  高斯过程回归,粒子群算法,电力需求预测,神经网络训练
英文关键词:
基金项目:
        
作者中文名作者英文名单位
黄元生huangyuansheng华北电力大学(保定)经济管理系
胡建军hujianjun华北电力大学(保定)经济管理系
蔡雅倩caiyaqian华北电力大学(保定)经济管理系
摘要点击次数: 2072
中文摘要:
      建立科学合理的中长期电力需求预测方法,是电力产业科学规划建设的前提。本文构建了基于高斯过程(GPR)和粒子群(PSO)的混合电力需求预测模型。论文采用PSO算法对协方差函数中的参数进行优化,将修正后的参数作为初始值在GPR模型中进行电力需求方面的培训。在贝叶斯框架下,对协方差函数中的参数再次进行优化。最后用训练好的GPR模型进行电力需求预测,并将结果与自回归积分移动平均模型和指数平滑模型进行比较。验证结果表明,基于高斯过程(GPR)和粒子群(PSO)的混合电力需求预测模型具有很好的稳定性和更高的预测精度。
英文摘要:
      
查看全文  查看/发表评论  下载PDF阅读器
关闭
  • 哈尔滨电工仪表研究所有限公司
  • 中国电工仪器仪表信息网
  • 中国仪器仪表学会
  • 中华人民共和国新闻出版总署
  • 中国科技期刊编辑学会
  • 黑龙江省科学技术协会
  • 编辑之家
  • 中国知网
  • 万方数据库
  • 维普网
  • 北极星电力网
  • 中华中控网
  • 网站首页
  • 期刊介绍
    • 期刊简介
    • 历任主编
    • 期刊荣誉
  • 编委会
    • 社长及主编
    • 主任委员
    • 编委名单
  • 投稿指南
    • 作者须知
    • 投稿步骤
    • 范文(规范细则)
    • 稿件处理流程
    • 著作权转让协议
  • 期刊影响力
  • 开放获取
  • 出版道德政策
    • 出版伦理声明
    • 学术不端认定和处理方法
    • 广告及市场推广
    • 同行评议流程
    • 斟误和撤回
    • 回避制度
    • 文章署名及版权转让
  • 历年目次
  • 联系我们
地址:哈尔滨市松北区创新路2000号    邮编:150028
邮箱:dcyb@vip.163.com    电话:0451-86611021;87186023
© 2012 电测与仪表    哈公网监备2301003445号
黑ICP备11006624号-1
技术支持:北京勤云科技发展有限公司