• 设为首页
  • 加入收藏
  • 联系邮箱
  • 网站首页
  • 期刊介绍
    • 期刊简介
    • 历任主编
    • 期刊荣誉
  • 编委会
    • 社长及主编
    • 主任委员
    • 编委名单
  • 投稿指南
    • 作者须知
    • 投稿步骤
    • 范文(规范细则)
    • 稿件处理流程
    • 著作权转让协议
  • 期刊影响力
  • 开放获取
  • 出版道德政策
    • 出版伦理声明
    • 学术不端认定和处理方法
    • 广告及市场推广
    • 同行评议流程
    • 斟误和撤回
    • 回避制度
    • 文章署名及版权转让
  • 历年目次
  • 联系我们
  • English
站内检索    
 
杨铮宇.基于大数据和机器学习的用电异常行为分析系统[J].电测与仪表,2023,60(6):167-173.
Yang Zhengyu.Analysis system of abnormal behavior of electricity consumption based on big data and machine learning[J].Electrical Measurement & Instrumentation,2023,60(6):167-173.
基于大数据和机器学习的用电异常行为分析系统
Analysis system of abnormal behavior of electricity consumption based on big data and machine learning
DOI:10.19753/j.issn1001-1390.2023.06.024
中文关键词:  用电异常行为  大数据  机器学习  聚类分析  窃电预警
英文关键词:abnormal electricity behavior, big data, machine learning, clustering analysis, early warning of electricity theft
基金项目:
  
作者中文名作者英文名单位
杨铮宇Yang Zhengyu云南电网有限责任公司计量中心
摘要点击次数: 1255
中文摘要:
      用户用电异常行为不仅对接入设备和用户本身产生影响,更会危及电网的正常运行,因此对用电异常行为的分析至关重要。基于大数据和机器学习技术,设计了一种用电异常行为分析系统,并提出了系统设计的总体框架和相关配置。所设计系统对用户用电的用电量、电压质量、负载及三相不平衡率、无功及功率因数等方面可以进行异常分析,并以可视化的方式向管理员和用户展示。同时,对高风险用户进行预警和跟踪处理,对窃电行为展开调查分析。本系统可以有效分析用户用电异常行为及进行窃电预警,对电网稳定运行起到关键作用。
英文摘要:
      Abnormal behavior of electricity consumption not only affects access equipment and users themselves, but also endangers the normal operation of power grid. Therefore, the analysis of abnormal behavior of electricity consumption is very important. Based on big data and machine learning technology, an analysis system of abnormal behavior of electricity consumption is designed, and the overall framework and relevant configuration of the system design are proposed. The designed system can analyze the abnormal factors such as power consumption, voltage quality, load, three-phase unbalance rate, reactive power and power factor, etc, and show them to administrators and users in a visual way. Meanwhile, early warning and tracking processing are conducted to high-risk users to carry out investigation and analysis of stealing electricity. The system can effectively analyze abnormal behaviors of users and give early warning of electricity theft, which plays a key role in the stable operation of power grid.
查看全文  查看/发表评论  下载PDF阅读器
关闭
  • 哈尔滨电工仪表研究所有限公司
  • 中国电工仪器仪表信息网
  • 中国仪器仪表学会
  • 中华人民共和国新闻出版总署
  • 中国科技期刊编辑学会
  • 黑龙江省科学技术协会
  • 编辑之家
  • 中国知网
  • 万方数据库
  • 维普网
  • 北极星电力网
  • 中华中控网
  • 网站首页
  • 期刊介绍
    • 期刊简介
    • 历任主编
    • 期刊荣誉
  • 编委会
    • 社长及主编
    • 主任委员
    • 编委名单
  • 投稿指南
    • 作者须知
    • 投稿步骤
    • 范文(规范细则)
    • 稿件处理流程
    • 著作权转让协议
  • 期刊影响力
  • 开放获取
  • 出版道德政策
    • 出版伦理声明
    • 学术不端认定和处理方法
    • 广告及市场推广
    • 同行评议流程
    • 斟误和撤回
    • 回避制度
    • 文章署名及版权转让
  • 历年目次
  • 联系我们
地址:哈尔滨市松北区创新路2000号    邮编:150028
邮箱:dcyb@vip.163.com    电话:0451-86611021;87186023
© 2012 电测与仪表    哈公网监备2301003445号
黑ICP备11006624号-1
技术支持:北京勤云科技发展有限公司