• 设为首页
  • 加入收藏
  • 联系邮箱
  • 网站首页
  • 期刊介绍
    • 期刊简介
    • 历任主编
    • 期刊荣誉
  • 编委会
    • 社长及主编
    • 主任委员
    • 编委名单
  • 投稿指南
    • 作者须知
    • 投稿步骤
    • 范文(规范细则)
    • 稿件处理流程
    • 著作权转让协议
  • 期刊影响力
  • 开放获取
  • 出版道德政策
    • 出版伦理声明
    • 学术不端认定和处理方法
    • 广告及市场推广
    • 同行评议流程
    • 斟误和撤回
    • 回避制度
    • 文章署名及版权转让
  • 历年目次
  • 联系我们
  • English
站内检索    
 
丁斌,袁博,郑焕坤,邢志坤,王帆.面向新型电力系统的电力大数据副本管理算法[J].电测与仪表,2022,59(1):10-17.
丁,YUAN Bo,ZHENG Huan-kun,XING Zhi-kun,WANG Fan.Research on Replica Management Strategy for Adaptive Storage of Electric Power Big Data[J].Electrical Measurement & Instrumentation,2022,59(1):10-17.
面向新型电力系统的电力大数据副本管理算法
Research on Replica Management Strategy for Adaptive Storage of Electric Power Big Data
DOI:10.19753/j.issn1001-1390.2022.01.002
中文关键词:  电力大数据,副本管理  低时延  流量预测
英文关键词:Power big data, Copy management  Low latency  Traffic forecast
基金项目:国家自然科学基金资助项目(61501185);国家电网面向多维信息系统智能运维的关键技术研究(SGTYHT/19-JS-215),中央高校基本科研业务费专项资金资助项目(2014MS87)
              
作者中文名作者英文名单位
丁斌丁国网河北省电力有限公司雄安新区供电公司
袁博YUAN Bo国网河北省电力有限公司雄安新区供电公司
郑焕坤ZHENG Huan-kun华北电力大学
邢志坤XING Zhi-kun国网河北省电力有限公司雄安新区供电公司
王帆WANG Fan国网河北省电力有限公司雄安新区供电公司
摘要点击次数: 1549
中文摘要:
      随着新型电力系统建设的不断加快,电网信息化规模持续增长,电力信息系统从数百台服务器发展到庞大的上万台虚拟机的数据中心,单靠人工对运维故障进行发现、梳理、统计、管理,不仅耗时耗力,也很难找到告警信息的根源进行故障溯源。如何实现高效的大数据存储,满足低延迟处理应用的需求,是一个非常具有挑战性的问题。本文提出了一种基于随机配置网络(SCN)的自适应副本存储管理系统,该系统考虑了网络流量和数据中心的地理分布。首先,SCN模型作为一种计算量小、预测性能好的快速学习模型,用于估计电力数据网络的流量状态。然后,提出了一系列的数据副本管理算法,以降低有限的带宽和固定的底层基础设施的影响。最后,利用电力行业数据并行网络计算框架实现了该模型。在相应省公司开展试点验证,该方案能够有效地处理电力大数据存储,跨分布式DCs的作业完成时间平均减少12.19%。
英文摘要:
      With the continuous acceleration of the construction of the power Internet of Things, the scale of power grid informatization continues to grow, and the power information system has developed from hundreds of servers to a huge data center with tens of thousands of virtual machines. Statistics and management are not only time-consuming and labor-intensive, but it is also difficult to find the root cause of the alarm information to trace the source of the fault. How to achieve efficient big data storage and meet the needs of low-latency processing applications is a very challenging problem. This paper proposes an adaptive power storage replica management system based on random configuration network (SCN), which takes into account the network traffic and the geographical distribution of data centers, and improves the real-time performance of data. First of all, the SCN model is used as a fast learning model with a small amount of calculation and good predictive performance to estimate the flow status of the power data network. Then, a series of data copy management algorithms are proposed to reduce the impact of limited bandwidth and fixed underlying infrastructure. Finally, the model is implemented using Data Parallel Computing Frameworks (DCFs) in the power industry. Pilot verification was carried out in the corresponding provincial company, and the program can effectively handle the large data storage of electric power, and the completion time of operations across distributed DCs was reduced by 12.19% on average.
查看全文  查看/发表评论  下载PDF阅读器
关闭
  • 哈尔滨电工仪表研究所有限公司
  • 中国电工仪器仪表信息网
  • 中国仪器仪表学会
  • 中华人民共和国新闻出版总署
  • 中国科技期刊编辑学会
  • 黑龙江省科学技术协会
  • 编辑之家
  • 中国知网
  • 万方数据库
  • 维普网
  • 北极星电力网
  • 中华中控网
  • 网站首页
  • 期刊介绍
    • 期刊简介
    • 历任主编
    • 期刊荣誉
  • 编委会
    • 社长及主编
    • 主任委员
    • 编委名单
  • 投稿指南
    • 作者须知
    • 投稿步骤
    • 范文(规范细则)
    • 稿件处理流程
    • 著作权转让协议
  • 期刊影响力
  • 开放获取
  • 出版道德政策
    • 出版伦理声明
    • 学术不端认定和处理方法
    • 广告及市场推广
    • 同行评议流程
    • 斟误和撤回
    • 回避制度
    • 文章署名及版权转让
  • 历年目次
  • 联系我们
地址:哈尔滨市松北区创新路2000号    邮编:150028
邮箱:dcyb@vip.163.com    电话:0451-86611021;87186023
© 2012 电测与仪表    哈公网监备2301003445号
黑ICP备11006624号-1
技术支持:北京勤云科技发展有限公司