• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
一种基于PSO-SVM的电能质量扰动识别与分类的新方法
A New Method of Power Quality Disturbance IdentificationBased on the PSO- SVM
Received:December 11, 2013  Revised:December 11, 2013
DOI:
中文关键词: 电能质量扰动  SVM分类器  PSO  复小波变换  电能质量监测
英文关键词: power  quality disturbance, the  classifier parameter  of SVM,PSO, complex  wavelet transform,power  quality monitoring
基金项目:
Author NameAffiliationE-mail
YANG Ning-xia* College of Information and Electrical Engineering,Shandong University of Science and Technology yangningxia521@126.com 
SUN Hao College of Information and Electrical Engineering,Shandong University of Science and Technology  
Hits: 1505
Download times: 807
中文摘要:
      针对目前电网电能质量扰动识别与分类中采用的SVM分类器参数难以选择的问题,提出了一种基于粒子群(PSO)优化SVM的电能质量扰动识别新方法。利用MATLAB软件对实际电网中常见5种扰动信号进行建模,将检测到的电压信号经复小波变换后作为PSO-SVM的输入样本进行训练和测试。仿真结果表明,该方法能够快速、可靠地对电能质量扰动进行识别与分类,对电网的电能质量监测具有极高应用价值。
英文摘要:
      Aiming at the current problem of difficult to choice the classifier parameter of SVM for the power quality disturbance identification and classification, put forward a new kind of power quality disturbance identification method based on the particle swarm optimization (PSO) SVM. Using MATLAB software to model five kinds of common power quality disturbance signal, the detected voltage signals were used as the input samples of the PSO-SVM training and testing after complex wavelet transform. The simulation results show that the method can identify and classify the power quality disturbance quickly and reliably, it has a high application value for power quality monitoring of the power grid.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd