• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进的SVM短期负荷预测研究
Short-term load forecasting based on improved SVM
Received:January 01, 2014  Revised:January 15, 2014
DOI:
中文关键词: 电力系统  气象因素  支持向量机  短期负荷预测
英文关键词: power system,meteorological factor,support vector machines,short-term load forecasting
基金项目:
Author NameAffiliationE-mail
wangyijun Northeast Dianli University  
lidianwen* Northeast Dianli University 964581601@qq.com 
Hits: 1850
Download times: 1051
中文摘要:
      本文提出一种基于数据挖掘技术的电力负荷短期预测方法,将SVM方法引入到短期负荷预测研究领域。通过随机选取历史负荷数据来更新回归函数,这样可以充分保证计算速度和较高的预测精度。本文提出利用松原地区的历史负荷数据作为训练样本,通过与传统的BP神经网络预测模型进行对比,对预测结果进行比较,证明SVM预测方法在一定程度上能够保证短期负荷预测的精度。
英文摘要:
      This paper presents a short term load forecasting method that based on the data mining technique.We introduced the SVM method into the field of short-term load forecasting.By randomly selected historical load data to update the regression function, so you can fully guarantee the computing speed and higher forecast accuracy. The paper proposes to use the historical load data of Song-Yuan areas as training samples,by comparison with the traditional BP neural network prediction model, comparing the predicted resul a certain degree.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd