• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于RFE和SA-SVM的变压器故障诊断
Transformer Fault Diagnosis Based on SVM-RFE Algorithm
Received:January 07, 2014  Revised:January 07, 2014
DOI:
中文关键词: 特征选择  基因选择算法 支持向量机  故障诊断
英文关键词: Feature  selection Recursive  feature elimination  Support vector  machine Fault  disgnosis
基金项目:
Author NameAffiliationE-mail
Li Yuheng* Laznhou jiaotong University 263160825@qq.com 
Zhao Feng Lanzhou jiaotong university,Institute of automation and electrical engineering  
Hits: 1710
Download times: 889
中文摘要:
      通过对变压器油中溶解气体进行分析,可以及早的发现变压器的故障。为了全面地反映变压器内部故障与特征气体之间的关系,提出采用5中特征气体浓度比值作共计15组作为特征预输入量,并采用基因选择(Recursive Feature Elimination,RFE)算法对15个特征量进行筛选,将筛选后特征量作为支持向量机(Support Vector Machine,SVM)模型输入。在SVM模型中,采用模拟退火(Simulated Annealing,SA)算法对SVM的参数进行优化,给出其GUI界面。最后,通过数据验证基于RFE-SA-SVM模型故障诊断率要高于单一模型。
英文摘要:
      Based on the analysis of gases dissovled in transformer oil, it can disscover the fault of transformer.In order to fully reflect the relationship between the internal fault of transformer and the characteristic of gas,it put forward a pre input witch uesd the characteristic of gas of 5 concentration ratio for a total of 15 sets of characteristic and adopted RFE algorithm on the 15 feature selection,using the selected feature as the input for the SVM model.In the SVM model,it optimized the parameters by using the SA algorithm and provided the GUI interface.Finally,the RFE-SA-SVM model fault diagnosis rate is better than that of single model through data validation.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd