• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进的PSO-SVM的短期电力负荷预测
Improved PSO-SVM based on short-term power load forecasting
Received:March 14, 2014  Revised:March 14, 2014
DOI:
中文关键词: 电力系统  气象因素  支持向量机  短期负荷预测
英文关键词: power  system, meteorological  factor, support  vector machines, short-term  load forecasting
基金项目:
Author NameAffiliationE-mail
WANG Yi-jun Northeast Dianli University wangyijun69@126.com 
LI Dian-wen* Northeast Dianli University 964581601@qq.com 
Gao-chao State Grid Jilin maintenance company  
Zhang Hong-he Benxi Power Supply Company  
Hits: 2074
Download times: 792
中文摘要:
      本文提出一种基于PSO-SVM电力负荷短期预测方法,在SVM学习过程中引入粒子群算法。通过选取组合核函数来改进SVM算法,这样可以充分保证计算速度和较高的预测精度。本文利用吉林地区的历史负荷数据作为训练样本,通过与传统的SVM预测模型进行对比,对预测结果与实际数据进行比较,证明基于组合核函数预测方法在一定程度上能够保证短期负荷预测的精度。
英文摘要:
      This paper proposes a PSO-SVM short-term power load forecasting method based on the introduction of particle swarm algorithm SVM learning process. To improve SVM kernel function by selecting a portfolio, so you can fully guarantee the computing speed and high prediction accuracy. In this paper, historical load data Jilin region as training samples, with the traditional SVM prediction model by comparing the predicted results were compared with the actual data to prove that the combination forecasting method based on kernel function to some extent able to guarantee the accuracy of short-term load forecasting.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd