• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进自适应遗传算法的分布式电源优化配置
Optimal Allocation of Distributed Generation in Distribution Network Based on Improved Self-adaptive Genetic Algorithm
Received:April 11, 2014  Revised:April 11, 2014
DOI:
中文关键词: 分布式电源  优化配置  多目标优化  自适应遗传算法  配电网规划
英文关键词: distributed  generation, optimal  allocation, multi-objective  optimization,adaptive  genetic algorithm, distribution  network planning
基金项目:国家电网公司科技项目(2012515);吉林省科技发展计划(20130206038GX)
Author NameAffiliationE-mail
WANG Zhen-hao Northeast Dianli University zhenhaowang@126.com 
LI Wen-wen* Northeast Dianli University 981451837@qq.com 
CHEN Ji-kai Heilongjiang Electric Power Research Institute  
LI Guo-qing Northeast Dianli University  
Hits: 2853
Download times: 918
中文摘要:
      分布式电源接入配电网对系统电压、网损等有一定的影响,针对配电网中分布式电源的规划问题,本文建立了以投资成本最小,电网网损费用最低、电压质量最优为目标的多目标优化模型,采用PSAT搭建算例模型进行潮流计算,同时,为了克服传统遗传算法的早熟现象及收敛性问题,采用改进的自适应遗传算法对分布式电源接入的位置和容量进行了优化,通过对IEEE33节点配电网络进行仿真分析,结果表明采用本文搭建的模型和算法可以有效改善系统的电压质量、降低网络损耗,验证了上述模型和算法的合理性及有效性。
英文摘要:
      Distributed genenration in distribution network has some influence on the system voltage, network loss etc. In the planning of distributed generation in distribution network, A multi-objective Optimization Model is proposed in this paper, which including the minimum investment cost, minimum power loss and the quality of voltage is the best. Using PSAT to build numerical model for power flow calculation. And in order to overcome the premature phenomena and convergence problem of genetic algorithms, a new improved self-adaptive genetic algorithm is employed to optimize the location and sizing of distributed genenration in distribution network. The effectiveness and feasibility for improving the quality of voltage and reducing the power loss are finally verified by the simulation of the IEEE 33 bus system example.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd