• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于双层BP神经网络的光伏电站输出功率预测
A Photovoltaic Power Station Output Power Prediction Approach Based on Double BP Neural Network
Received:April 23, 2014  Revised:May 04, 2014
DOI:
中文关键词: 光伏电站  功率预测  双层BP神经网络  相关性  气象预测信息
英文关键词: photovoltaic power station  power forecasting  double BP neural network model  correlation  weather forecast information
基金项目:新能源电力系统国家重点实验室开放课题资助
Author NameAffiliationE-mail
zhang li ying* North China Electric Power University 839591037@qq.com 
Wang Zezhong North China Electric Power University  
Hits: 2065
Download times: 1470
中文摘要:
      光伏电站输出功率对电网调度有很大影响,但受到太阳辐射强度和气象因素的影响,光伏电站输出功率具有随机性和不可控性。为合理利用光伏发电系统,本文建立一种基于气象预测信息以及BP神经网络的光伏电站输出功率预测模型。通过相关性分析确定影响光伏出力的影响因子,结合历史数据和气象因素进行模型训练和功率预测。本文主要提出一种新的预测模型-双层BP神经网络模型,通过对某光伏电站预测结果与实测值对比,结果表明该方法能有效提高光伏电站输出功率预测精度,对发电计划的制定有较好的参考价值和实用价值。
英文摘要:
      Photovoltaic power station output power has a great influence to power grid scheduling, but photovoltaic power station output power is random and not controllable, and affected by the intensity of solar radiation and meteorological factors. For reasonable use of photovoltaic power generation systems, a BP neural network forecasting mode based on weather forecast information is proposed in the paper to predict PV system output power. The influential factors of PV station output power is determined through correlation analysis. The training and prediction model are processed combined with historical data and meteorological factors. A new forecasting model- double BP neural network model is proposed in this paper. The photovoltaic power station predicted results and the measured values are compared. The results show that the method can effectively improve the predictive accuracy of PV station output power and has good reference value and practical value to power generation planning.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd