• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于切换模型极限学习机的超短期负荷预测
Ultra-short term load forecasting based on switching model extreme learning machine
Received:April 24, 2014  Revised:April 24, 2014
DOI:
中文关键词: 极限学习机  切换模型  负荷预测  更新模型  预测精度
英文关键词: Extreme Learning Machine  switching model  load forecasting  update the model  prediction accuracy
基金项目:
Author NameAffiliationE-mail
DENG Ming-li* State Grid Electric Power#$NBSCompany#$NBSSichuan#$NBSProvince skills#$NBStraining center 928614547@qq.com 
ZHANG Jing State Grid Electric Power#$NBSCompany#$NBSSichuan#$NBSProvince skills#$NBStraining center  
Hits: 1852
Download times: 677
中文摘要:
      本文针对极限学习机算法中输出波动大与模型不稳定的问题,提出采用切换模型极限学习算法进行超短期电力负荷预测的方法。该算法通过切换模型准则,将建立的多个神经网络模型分为误差较小的保持模型和误差较大的更新模型两部分。保持模型无需进行在线更新,从而减低模型输出的波动性;更新模型则需采取随机方法进行在线更新,从而使得训练误差达到最小,提高模型的泛化能力。最后通过对某地区电力负荷的预测仿真,预测结果表明了本文所提方法提高了预测速度,节省了计算时间,具有更佳的泛化能力和预测精度。
英文摘要:
      In this paper, large fluctuations in output instability problems with the model for extreme learning machine algorithm, the proposed learning algorithm using the limit switch model for ultra short term load forecasting method. Multiple neural network model of the algorithm by switching the model guidelines to be established to maintain the model into smaller error and error larger update the model in two parts. Keep the model without the need for online updates, thereby reducing volatility model output; update the model you need to take a random method for online updates, which makes the training error to a minimum, improve the generalization ability of the model. Finally, the power load forecast for an area of simulation, forecasting results show that the proposed method improves the prediction speed, save computing time, with better generalization and prediction accuracy.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd