• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于灰色神经网络优化组合的风力发电量预测研究
Study on wind power capacity prediction based on grey neural network optimal combination forecasting technique
Received:April 29, 2014  Revised:April 29, 2014
DOI:
中文关键词: 人工神经网络  灰色预测技术  优化组合预测技术  误差  风力发电量
英文关键词: Artificial  neural network, Gray  prediction model, Optimal  combination forecasting  technique, Wind  power generation  capacity
基金项目:
Author NameAffiliationE-mail
Zhang Yonggao* East China Jiaotong University ygzhang@ecjtu.jx.cn 
wang yan East China Jiaotong University  
SUN Jia Nan Chang University  
GAO Yan-li EAST CHINA JIAOTONG UNIVERSITY  
Hits: 1985
Download times: 831
中文摘要:
      文中提出一种新型灰色神经网络优化组合的风力发电量预测研究,将人工神经网络预测模型和灰色预测模型有效结合,不仅考虑了风力、风向和温度等影响因素,而且将往年风力发电量的历史数据综合考虑,结合两种预测优点,从而提高了预测的准确度并降低预测误差。算例结果证明,这种新型的灰色神经网络优化组合预测值误差低于单一的灰色预测和神经网络预测,因而具有研究价值。
英文摘要:
      In this paper, combining artificial neural network (ANN) prediction model with gray prediction model (GM) effectively as an optimal combination forecasting technique is proposed. It can reduce the prediction error when it is applied in wind power generation capacity forecasting. Taking the factors affecting the wind power generation capacity into account are wind velocity, wind direction, temperature, and the wind power generation amount in previous years and so on. Combining with the advantages of both ANN and GM model, using the optimal combination of the forecasting techniques can improve the prediction accuracy and reduce the prediction error. From the result, the optimal combination of the forecasting techniques error is less than a single gray prediction and neural network prediction. It has research value for the wind power generation foresting in the future.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd