• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于PCA和MPGA优化神经网络的整流器故障诊断
Three-phase Rectifiers Fault Diagnosis Based on PCA and MPGA Optimized Neural Network
Received:May 20, 2014  Revised:May 20, 2014
DOI:
中文关键词: 主元分析  多种群遗传算法  移民算子  迁徙算子  故障诊断  三相整流装置
英文关键词: principal  component analysis, multi-population  genetic algorithm, immigration  operator, migration  operator,fault  diagnosis,three-phase  rectifiers
基金项目:四川省教育厅重点项目(13ZA0023);西华大学流体及动力机械省部共建教育部重点实验室资助(SBZDPY-11-14,13)
Author NameAffiliationE-mail
LONG Jie* School of Electrical and Information Engineering,Xihua University 786278128@qq.com 
ZHANG Bi-de School of Electrical and Information Engineering,Xihua University  
ZHANG Qiang School of Electrical and Information Engineering,Xihua University  
LI Ming-kun School of Electrical and Information Engineering,Xihua University  
ZHAO Dan School of Electrical and Information Engineering,Xihua University  
WU Zhi-jun School of Electrical and Information Engineering,Xihua University  
Hits: 2134
Download times: 1053
中文摘要:
      针对电力电子整流电路故障识别方法中的信号提取与模式识别两个核心问题,提出一种基于主元分析(PCA)和改进多种群遗传算法(MPGA)优化BP神经网络的三相整流装置电路故障识别方法。首先采用主元分析提取故障信号中对应的故障特征向量,然后利用移民算子与迁徙算子结合的MPGA优化BP神经网络分类器进行故障类型的识别。仿真结果表明,该方法对三相桥式整流装置进行故障诊断能准确识别与定位各故障类型,而且具有鲁棒性更好,诊断正确率更高的特点。
英文摘要:
      For two core issues of fault feature extraction and fault identification,a novel method based on principal component analysis and improved multi-population genetic algorithm optimized BP neural network were presented for diagnosis of three-phase rectifiers.Firstly, principal component analysis is used to extract the features corresponding to various fault,then fault types are identified through multi-population genetic algorithm of immigration operator and migration operator optimized neural network.Simulation results show that this method for three-phase full-bridge controlled rectifier fault diagnosis can identify and locate each fault type accurately,and has better robustness and better diagnostic accuracy rate characteristics.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd