• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于PCA-SVM模型的中长期电力负荷预测
The Medium And Long Term Power Load Forecasting Model Based On PCA-SVM
Received:May 21, 2014  Revised:May 21, 2014
DOI:
中文关键词: 中长期负荷预测  综合信息集  主成分分析  支持向量机
英文关键词: medium and long term load forecasting,comprehensive information,principal component analysis(PCA),Support vector machine(SVM)
基金项目:
Author NameAffiliationE-mail
zhan chang jie* School of Electrical Engineering and Information, Sichuan University 229358788@qq.com 
zhou bu xiang School of Electrical Engineering and Information, Sichuan University  
Hits: 2011
Download times: 1012
中文摘要:
      电力系统负荷预测模型可以分为单一指标模型和信息集(多指标)模型,为客观准确地对中长期负荷预测进行研究,就要避免重要信息的遗漏,尽可能多的考虑与其有关联的信息。针对信息集模型中的大量信息,本文通过主成分分析法把综合信息集简化为少数几个主成分,降低了数据的维数;引入核函数和对偶技巧对支持向量机算法进行改进,有效避免了维数灾难和目标函数不可微的问题。通过标准SVM和PCA-SVM模型仿真对比,验证PCA-SVM模型预测结果更为准确,本文所提方法具有一定的实用性和有效性。
英文摘要:
      Power system load forecasting model can be divided into the single index model and information collection model.To insure the accuracy, it is necessary to avoid missing the important information and must collect the related indicators as much as possible. This paper used principal component analysis(PCA) to simplify information.Data correlation removed and data dimension reduced through normalization processing.By introducing the kernel function and the dual skills of the support vector machine algorithm, can effectively avoid the curse of dimensionality.Compared to the SVM method, the accuracy of load forecasting is effectively improved.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd