• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于粗糙集和RBF神经网络的变压器故障诊断方法研究
Research of Transformer Fault Diagnosis Based on Rough Sets and RBF Neural Network
Received:June 06, 2014  Revised:June 06, 2014
DOI:
中文关键词: 变压器  故障诊断  粗糙集  RBF神经网络  信息熵
英文关键词: RBF  neural network, rough  set, information  entropy, transformer  fault diagnosis
基金项目:江苏省高校自然科学基金;国网江苏省电力公司科技项目
Author NameAffiliationE-mail
YANG Zhi-chao* School of Electric Power Engineering,Nanjing Institute of Technology zcl4900@163.com 
ZHANG Cheng-long School of Electric Power Engineering,Nanjing Institute of Technology  
WU Yi State Grid Jiangsu Electric Power Company  
anweiwei School of Electric Power Engineering,Nanjing Institute of Technology  
ZHU Hai-bing State Grid Jiangsu Electric Power Company  
gongdengcai Nantong Power Supply Company  
Hits: 2331
Download times: 868
中文摘要:
      针对变压器故障诊断神经网络模型存在网络结构复杂、训练时间长等问题,提出基于粗糙集及RBF神经网络的变压器故障诊断方法。运用粗糙集理论中无决策分析,建立基于可分辨矩阵和信息熵的知识约简算法,进行数据挖掘,寻找最小约简;以处理后的数据集合作为训练样本,采用高斯函数作为径向基函数,分别求解方差及各层权值,建立变压器故障诊断模型。通过测试对比,本文算法虽然略微降低诊断正确率,但网络结构简单、训练速度快、泛化能力强,对提高神经网络在变压器故障诊断中的应用性能有较好的指导意义。
英文摘要:
      For the problems of complex network structure, long training time and other issues in classical neural networks, a method of RBF neural network combined with rough sets is proposed in this paper for transformers fault diagnosis. Firstly, the minimum reduction is calculated after data mining based on distinguishes matrix and information entropy in rough set theory. Then, using a Gaussian function as the radial basis function, the variance and weights of layers is calculated by the processed data collection as training samples. Finally, the transformer fault diagnosis model is built. By comparing the test results, although the algorithm in terms of diagnostic accuracy is slightly lower, but the simple network structure, training speed and strong generalization ability of neural networks to improve application performance in transformer fault diagnosis have better guidance.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd