• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
差分进化算法在变压器故障诊断中应用
Differential Evolution Algorithm in the Application of the Transformer Fault Diagnosis
Received:June 30, 2014  Revised:June 30, 2014
DOI:
中文关键词: 变压器  差分进化算法  支持向量机  故障诊断
英文关键词: Power  Transformer, Differential  Evolution Algorithm, Support  Vector Machine, Fault  Diagnosis
基金项目:
Author NameAffiliationE-mail
HAN Li China University of Mining and Technology  
SUN Wang China University of Mining and Technology  
LUO Peng* China University of Mining and Technology dqluopeng@163.com 
YU Peng-xi China University of Mining and Technology  
DU Gang China University of Mining and Technology  
LI Yun-peng LanZhou University  
Hits: 1650
Download times: 705
中文摘要:
      针对典型小样本数据的变压器故障诊断,本文提出了一种基于差分进化算法优化的支持向量机构建电力变压器故障诊断方法。该方法是采用差分进化算法来优化支持向量机核函数参数g和惩罚因子C,将优化过的支持向量机对小样本故障数据进行故障诊断,并将其与其它支持向量机的优化算法进行比较。实验结果表明,该方法比网格搜索优化算法和粒子群优化算法具有更高的准确率,非常适合于电力变压器的故障诊断。
英文摘要:
      According to transformer fault diagnosis for typical small sample data, Sthis paper proposes a support vector machine of power transformer fault diagnosis method (SVM) based on differential evolution algorithm optimization. This method use the differential evolution algorithm to optimize parameters C,g in support vector machine, using the optimized support vector machine (SVM) to fault diagnosis data of small sample, and comparing with other optimization algorithm of support vector machine (SVM).Experimental data shows that accuracy with this method higher than the grid search optimization method and particle swarm optimization algorithm ,and is very suitable for the fault diagnosis of power transformer.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd