• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进KNN算法的风电功率实时预测研究
Wind Power Real-time Prediction Research Based on the Improved KNN algorithm
Received:July 11, 2014  Revised:July 11, 2014
DOI:
中文关键词: 风力发电  功率预测  混沌时间序列  相空间重构  C-C方法  KNN算法
英文关键词: wind power generation  power prediction  chaotic time series  phase space reconstruction  c-c method  knn method
基金项目:国家重点基础研究发展计划项目(973计划) (2013CB228201);国家自然科学基金(51307017);吉林省科技发展计划项目(20140520129JH);吉林省教育厅“十二五”科学技术研究项目(吉教科合字[2014]第474号);吉林市科技发展计划资助项目(2013625004)
Author NameAffiliationE-mail
YANG Mao* School of Electrical Engineering,Northeast Dianli University yangmao820@163.com 
JIA Yun-peng School of Electrical Engineering,Northeast Dianli University  
MU Gang School of Electrical Engineering,Northeast Dianli University  
YAN Gan-gui School of Electrical Engineering,Northeast Dianli University  
Liujia Taian Dongping power supply company  
Hits: 2127
Download times: 1121
中文摘要:
      大规模风电并入电网将对电网的规划建设、分析控制以及电能质量等方面产生显著的影响,高精度的超短期风电功率预测可以对含大规模风电电力系统的安全调度和稳定运行提供可靠的依据。本文对风电功率的超短期预测方法进行了研究,以混沌理论为基础,对相空间重构参数进行了计算,提出了基于改进KNN算法的风电功率实时预测方法,并且应用多个评价指标来对预测结果进行评价,以吉林西部某风电场实测数据为例,验证了模型的有效性。
英文摘要:
      Integration of large-scale wind-farm in power grid will impact grid planning, construction and energy quality. To improve power system dispatching and safe-stable operation of power grid containing a lot of wind power generating units, accurate short-term wind power forecasting is significance. This paper proposed a method of wind power short-term multi-step prediction research based on the improved KNN algorithm. Optimal parameters for phase space reconstruction and prediction method were studied, and the application of multiple evaluation index to evaluate the forecast results, it verified the effeteness of the model.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd