• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于hadoop云平台的智能电网MapReduce数据计算技术研究
Research on Data Computing Technologies of MapReduce for Smart Grid
Received:July 27, 2014  Revised:July 27, 2014
DOI:
中文关键词: 智能电网  数据计算  hadoop  mapreduce
英文关键词: smart grid  data computing  hadoop  mapreduce
基金项目:吉林省教育厅项目(2014317、3014309); 吉林省发改委项目(2013118831); 长春市科技局项目(2013266)。
Author NameAffiliationE-mail
mengxiangping Institute of Electrical and Information Engineering,Changchun Institute of Technology 8378749@qq.com 
ZHOU Lai* School of Information Engineering,Northeast Dianli University 8378749@qq.com 
Hits: 2126
Download times: 841
中文摘要:
      为应对未来智能电网海量数据信息带来的实时计算、分析等难题,本文首先在Hadoop云计算平台基础上搭建MapReduce框架,论证了其良好的数据计算性能,并通过实验发现MapReduce在进一步提高计算效率方面的诸多问题--任务调度不均、数据偏移、异构环境下适应性差等。随后考虑MapReduce原始调度方式的弊端并给出均衡数据映射、评估节点性能的MapReduce 架构改进方案,并提出了动态匹配的调度算法(DMSA--Dynamic Matching Scheduling Algorithm),最后通过在仿真平台上的集群实验, 减少了系
英文摘要:
      In response to the problems of real-time calculation and analysis broughted by massive data of future smart grid,we first built MapReduce frame based on a Hadoop cloud computing platform, demonstrated its powerful performance of data computing, and found many problems by an experiment in further improving computing efficiency for MapReduce - uneven scheduling task, offsetting data and the poor adaptability in heterogeneous environments, etc. Then we considered the drawbacks of the original scheduling program and gave an improved program for MapReduce architecture of mapping equilibrium data,assessing node performance,and proposed a dynamic matching scheduling algorithm(DMSA--Dynamic Matching Scheduling Algorithm).Finally, we reduced the consumption of computing resources of the system, shortened the running time, significantly improved the performance of the cluster,and enhanced data locality through the experiment on the simulation platform. We proved the feasibility that this strategy can enhance the computing efficiency of MapReduce.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd