• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于EEMD和ARCH的风电功率超短期预测
Ultra-Short-Term Wind Power Forecasting Based on EEMD and ARCH
Received:August 15, 2014  Revised:August 15, 2014
DOI:
中文关键词: 超短期预测  EEMD  游程检验法  ARCH
英文关键词: ultra-short-termforcast, EEMD, runs  test, ARCH
基金项目:多源互补源网协调优化调度理论及方法的研究(5227201350PM)
Author NameAffiliationE-mail
Li Le Electric and Information School of Sichuan University sculile@163.com 
Liu tian-qi* Electric and Information School of Sichuan University tqliu@sohu.com 
Chen Zhen-huan State Grid Gansu Electric Power Company  
Wang Fu-jun State Grid Gansu Electric Power Company  
Guang Tie-ying State Grid Gansu Electric Power Company  
He Chuan Electric and Information School of Sichuan University  
Wu Xing Electric and Information School of Sichuan University  
Hits: 2320
Download times: 1493
中文摘要:
      针对风电功率具有非平稳性和波动集群现象,提出一种基于集合经验模态分解和自回归条件异方差组合模型预测方法。该方法通过EEMD分解法将风电出力分解为一系列平稳的时序分量,再由游程判定法,将时序分量重组为波动分量、短期趋势分量和长期趋势分量,以集中分量特征信息降低预测难度;针对各分量的波动特征,建立相应的ARCH预测模型。算例结果表明,该种组合预测方法简单,具有较高的预测精度,能更好的反应风电功率的波动特性。
英文摘要:
      The wind powerhas the qualifications of random and volatility concentration.This paper present a combined prediction based on ensemble empirical mode decomposition (EEMD) and autoregressive conditional heteroskedasticity model(ARCH).By means of the EEMD,the wind power sequence is decomposed into a series of stationary component.Then the components are reconstructed into fluctuant components,medium-term trend and long-term trend components for centralizing the characteristic information and reducing the difficulty of predicting.Finally,considering different types of components,the different ARCH model is built.Simulation results show that the combined prediction can offer more accurate forecasting result and reflect the fluctuation of wind power.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd