• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于自适应神经模糊推理系统的风电功率预测方法
Wind Power Prediction Based on Adaptive Neuro-fuzzy Inference System
Received:January 06, 2015  Revised:January 06, 2015
DOI:
中文关键词: 自适应神经模糊推理系统  风电功率  多步滚动预测模式  减法聚类
英文关键词: adaptive  neuro-fuzzy  inference system, wind  power, multi-step  rolling prediction  mode, subtractive  clustering
基金项目:国家重点基础研究发展计划项目(973计划)(2013CB228201);国家自然科学基金项目(51307017);吉林省科技发展计划项目(20140520129JH);吉林省教育厅“十二五”科学技术研究项目(吉教科合字[2014]第474号);吉林市科技发展计划资助项目(2013625004);吉林省产业技术研究与开发项目(吉财建指[2014]1083号)
Author NameAffiliationE-mail
YANG Mao* School of Electrical Engineering,Northeast Dianli University yangmao820@163.com 
QI Yue Northeast Dianli University  
MU Gang Northeast Dianli University  
YAN Gan-gui Northeast Dianli University  
Hits: 1965
Download times: 885
中文摘要:
      对风电场输出功率进行精确的预测是保证含大规模风电电力系统安全稳定运行的重要手段。文中对多步滚动预测模式进行了分析,并建立了ANFIS(自适应神经模糊推理系统)预测模型,进而实现对风电功率的实时滚动预测。以吉林省西部某风电场的实测数据为例进行算例分析,其中在形成初始模糊推理系统结构时,采用的算法是减法聚类,该算法有效的避免了人工设定结构法产生的组合爆炸问题。将基于线性回归法、滑动平均法和持续法进行风电功率实时多步滚动预测时得到的预测结果与利用所提出的ANFIS预测方法得到的结果进行比较,结果表明后者的预测精度更高,进一步说明了ANFIS预测模型的有效性。
英文摘要:
      Accurate wind power prediction is an important method to guarantee the power system containing large-scale wind power to be safe and stable. This paper analyses the multi-step rolling prediction mode, establishes the ANFIS (adaptive neuro-fuzzy inference system) prediction model, and realizes real-time multi-step rolling prediction of wind power. Taking the real-measured data from a wind farm in the west of Jilin province as an example, case study is done. The subtraction clustering algorithm is used when it form initial fuzzy inference system structure. This algorithm is effective to avoid the combination explosion problem of the artificial setting structure method. The real-time multi-step rolling results of wind power based on the linear regression method, the moving average method and the persistence method are compared with the prediction results based on the proposed ANFIS prediction method. The result of case study shows that the prediction accuracy of the latter method is the highest, and it further illustrates the validity of the ANFIS model.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd