• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进熵权法的风电功率组合预测方法
A Combination Method Study for Wind Power Prediction Based on Improved Entropy Method
Received:February 04, 2015  Revised:February 04, 2015
DOI:
中文关键词: 改进熵权法  风电功率  滚动式权重  组合预测
英文关键词: improved entropy method, wind power, rolling weight, combination prediction method
基金项目:国家重点基础研究发展计划项目(973计划)(2013CB228201);国家自然科学基金项目(51307017);吉林省科技发展计划项目(20140520129JH);吉林省教育厅“十二五”科学技术研究项目(吉教科合字[2014]第474号);吉林市科技发展计划资助项目(2013625004);吉林省产业技术研究与开发项目(吉财建指[2014]1083号)
Author NameAffiliationE-mail
YANG Mao* School of Electrical Engineering,Northeast Dianli University yangmao820@163.com 
QI Yue Northeast Dianli University  
MU Gang Northeast Dianli University  
YAN Gan-gui Northeast Dianli University  
Hits: 1592
Download times: 707
中文摘要:
      对风电场输出功率进行精确的预测是保证含大规模风电电力系统安全稳定运行的重要手段。采用单一预测模型进行预测时,都会有各自的优势和劣势,为了更好地提高风电功率预测精度,该文提出了基于改进熵权法的风电功率组合预测方法,并同时采用滚动式权重,以此来实现对单一预测模型的互补。以吉林省西部某风电场的实测数据为例进行分析,说明了基于改进熵权法的风电功率组合预测方法在对风电功率进行预测时的有效性,同时证明了滚动式权重可以实现对权重的不断更新,使各权重值能够反映出风电功率的最新变化,从而实现了对风电功率预测精度的提高。
英文摘要:
      Accurate wind power prediction is an important method to guarantee the power system containing large-scale wind power to be safe and stable. Using a single prediction model to predict will all have their own advantages and disadvantages. Therefore, in order to improve the prediction accuracy of wind power prediction, the paper puts forward a combination method for wind power prediction based on improved entropy method, and uses the rolling weight at the same time. In this way, it achieves the complementarity of all single prediction models. Taking the real-measured data from a wind farm in the west of Jilin province as an example, case study is done. It illustrates that improved entropy method is effective when it is used to predict the wind power. In the same time, it is proved that the rolling weights can realize the constant renewal of weights, and reflect the latest changes of wind power, so as to achieve the increase of wind power prediction accuracy.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd