• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于人群搜索算法优化参数的支持向量机短期电力负荷预测
Based on population search algorithm to optimize the parameters of support vector machine for Power short-term load forecasting
Received:February 28, 2015  Revised:June 03, 2015
DOI:
中文关键词: 人群搜索算法  支持向量机  短期负荷预测  参数优化
英文关键词: SOA, SVM, Short-term  load forecasting, Parameter  optimization
基金项目:
Author NameAffiliationE-mail
Wei Li-bing* School of Automation and Electrical Engineering,Lanzhou Jiao Tong University wlb_890928@126.com 
Zhao Feng School of Automation and Electrical Engineering,Lanzhou Jiao Tong University  
Wang Sihua School of Automation and Electrical Engineering,Lanzhou Jiao Tong University  
Hits: 1821
Download times: 778
中文摘要:
      支持向量机是一种新型机器学习算法,它基于结构风险最小化准则取得较小的实际风险,有效提高了泛化能力,具有理论严密、适应性强、全局优化等特点,在模式识别和回归问题等方面应用广泛。本文以某地区历史负荷数据为输入,通过人群搜索算法对支持向量的各项参数进行寻优计算,得到最优的参数取值,然后把最优参数代入到SVM预测模型中,得到人群搜索算法的支持向量机(SOA-SVM)模型,利用此模型对某地区未来24小时的负荷进行短期预测。通过算例验证,利用SOA-SVM预测的精度要比BP神经网络和PSO-SVM的精度要高,所以说明用此方法进行短期负荷预测是有效和可行的。
英文摘要:
      Support Vector Machine(SVM) is a new kind of machine learning algorithm, which is based on structural risk minimization criterion to obtain smaller actual risk, effectively improve the generalization ability, has the theory tightly, strong adaptability, the characteristics of global optimization, widely used in pattern recognition and regression problems. The paper is based on the historical load data as input, through the Seeker Optimization Algorithm(SOA) to search algorithm on the parameters of support vector optimization, and get the optimal parameter selection, and then put the optimal parameter generation into the SVM prediction model, get the Seeker Optimization Algorithm of support vector machine (SOA-SVM) model, by using this model for the next 24 hours in one region of the load for short-term prediction. Through the example, the use of SOA-SVM prediction precision accuracy is higher than BP neural network and PSO-SVM,so that use this method to short-term load forecasting is feasible and effective.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd