• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于有效度遴选和纵横交叉算法的负荷组合预测
A Combination Model for Short-Term Load Forecasting Based on Crisscross Optimization Algorithm
Received:March 07, 2015  Revised:May 15, 2015
DOI:
中文关键词: 纵横交叉算法  有效度  小波包变换  负荷组合预测
英文关键词: crisscross optimization algorithm  forecasting effective measure  wavelet packet transform  load combination forecasting
基金项目:广东省自然科学基金(博士启动)项目(2013040013776);广东省电网公司科技项目(K-GD2013-0789)
Author NameAffiliationE-mail
lihailiang Power Supply Bureau of Guangdong Power Grid Corporation Maoming lu264952035@qq.com 
caoyanchao Power Supply Bureau of Guangdong Power Grid Corporation Maoming  
menganbo College of Automation,Guangdong University of Technology  
Lu Haiming* College of Automation,Guangdong University of Technology 496113194@qq.com 
郭壮志 College of Automation,Guangdong University of Technology  
Hits: 2109
Download times: 858
中文摘要:
      针对单一模型预测精度不高的问题,提出了基于有效度遴选和纵横交叉算法的负荷组合预测,该方法有效克服了选择单项模型的随机性和权重难以确定的问题。新方法根据预测有效度筛选组合预测单项模型,然后利用组合模型对小波包分解所得各个负荷子序列进行预测,并采用纵横交叉算法求取各单一模型的权值,最后叠加各子序列预测值得到完整预测结果。实例分析中,以广东省某电网实测负荷数据为例,研究结果表明:基于有效度遴选和纵横交叉算法的组合预测方法可操作性强、通用性好,并明显优于各单项预测模型、等权重组合模型和方差倒数组合模型的预测精度。
英文摘要:
      There exist many uncertain factors in electric power system load. To address the low prediction of single model ,wavelet packet transformation is utilized to divide the original load curve into sub-sequences with different frequencies. On this basis, BP neural network, error feedback weighted time sequence and grey model are combined to form a new prediction modal,whose weight of every individual modal is optimized by crisscross optimization algorithm(CSO). Finally, continuous seven days' short-term load forecasting is implemented on certain district power grid in GuangDong. The results prove that the proposed model is apparently superior over other models like single prediction modal, equal weight prediction modal as well as the the inverse variance prediction model in terms of prediction accuracy.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd