• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进量子粒子群优化模糊聚类的变压器故障诊断方法
Research on Transformer Fault Diagnosis Method Based on Improved QPSO-FCM Algorithm
Received:March 19, 2015  Revised:April 06, 2015
DOI:
中文关键词: 电力变压器  改进QPSO-FCM  油中溶解气体  故障诊断
英文关键词: power  transformer, improved  QPSO-FCM, dissolved  gas in  oil, fault  diagnosis
基金项目:国家电网公司科技项目(GBY17201400022)
Author NameAffiliationE-mail
Li Min* Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense,North China Electric Power University 317571076@qq.com 
Xie Jun Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense,North China Electric Power University  
Wang Yongqiang Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense,North China Electric Power University  
Lü Fangcheng Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense,North China Electric Power University  
Hits: 1584
Download times: 545
中文摘要:
      对电力变压器进行高效准确的故障诊断可有效保障电力系统安全、稳定运行。为提高变压器故障诊断正确率,提出了一种基于改进量子粒子群优化模糊聚类的变压器故障诊断方法。采用遗传算法杂交概率的思想改进量子粒子群算法提高算法收敛速度、防止陷入局部极值,进而弥补模糊聚类算法易受初始值影响的不足,进而实现对变压器实现高效、准确的故障诊断。以变压器油中典型气体作为故障特征量,选取68组数据建立故障集,采用改进量子粒子群算法寻找最佳初始聚类中心,并将其应用于3种不同数据组进行验证,实验结果表明本文所提方法的有效性。
英文摘要:
      Efficient and accurate fault diagnosis for power transformers can effectively protect the power system safe and stable operation. Transformer fault diagnosis method was proposed based on improved quantum-behaved particle swarm optimization fuzzy clustering to improve the accuracy of transformer fault diagnosis. Quantum-behaved particle swarm optimization algorithm was improved by genetic hybrid algorithm to improve the convergence speed and prevent falling into local extremum, which compensated the lack of sensitive of fuzzy clustering algorithm to initial value, and then the transformer achieved efficient and rapid fault diagnosis. In this algorithm, the dissolved gas in oil was taken as the characteristic quantity of fault, the fault set was composed of 68 groups of data, and improved QPSO was adopted to obtain the optimal initial cluster centers for verifying the 3 different data sets. Experiments show that the effectiveness of the proposed method.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd