Traditional LCL converters haven’t the ability to limit the short-circuit fault current and only remove converter using the breaker. However, the VSC converters become uncontrollable after the short circuit fault cutting off and the power switches may be damaged if the circuit breaker removes slowly. Compared to the filter function of the LCL passive components in traditional VSC converters, the novel LCL-VSC converter has the ability of limiting the short circuit fault current using the reasonable designed LCL parameters. In this paper the mathematical model of the LCL converter is established and the characteristics of the short circuit fault current generated by the ac side and dc side are analyzed. Thus one design and optimization scheme of the reasonable LCL passive parameter is proposed for the LCL-VSC converter having short circuit fault current limiting ability. In addition to ensuring the LCL passive components filtering the high-frequency harmonic, this scheme also considers the impedance characteristics to limit the fault current of AC and DC short circuit fault respectively flowing through the power switch no more than the maximum allowable operating current, in order to make the LCL converter working continuously. Finally, the 200kW simulation system was set up to prove the validity and feasibility of the theoretical analysis using the proposed design and optimization scheme.