• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于改进人工鱼群优化支持向量机的短期风电功率预测
Short-term Wind Power Prediction Based on Improved Artificial Fish Swarm Algorithm Optimization Support Vector Machine
Received:April 11, 2015  Revised:June 18, 2015
DOI:
中文关键词: 人工鱼群算法  支持向量机  变系数因子  功率预测
英文关键词: artificial fish swarm algorithm  support vector machine  variable coefficient  power prediction
基金项目:上海市教委科研创新项目(13YZ140)、上海市自然科学基金项目(11ZR1413900)、上海市教委重点学科(J51901)
Author NameAffiliationE-mail
WANG Yong-xiang* School of Electrical Engineering,Shanghai Dianji University 304611081@qq.com 
CHEN Guo-chu School of Electrical Engineering,Shanghai Dianji University chengc@sdju.edu.cn 
Hits: 2003
Download times: 1518
中文摘要:
      针对人工鱼群算法中固定的视野和步长导致算法寻优速度变慢、易陷入局部最优等问题,引入了一个变系数因子来自适应调节人工鱼在聚群、追尾和觅食行为中的视野和步长;此外,为了降低算法后期运算复杂度以获得更多有效的人工鱼,加入一种人工鱼群最大迭代次数淘汰机制。将改进后的人工鱼群算法用来优化支持向量机中的核函数参数和惩罚参数,并应用到风电场短期风电功率预测中。通过实验仿真对比得出改进的人工鱼群优化支持向量机在短期风电功率预测中有较好的效果。
英文摘要:
      Due to the fixed vision and step of artificial fish swarm algorithm resulting in algorithm optimization speed slow, easy to fall into local optimum value, it introduces a variable coefficient factor for adapting the vision and step in artificial fish’s swarm, rear end and foraging behavior; in addition, to reduce computational complexity of late algorithm and obtain more effective artificial fish, adding a maximum number of iterations elimination mechanism. Then, using improved artificial fish swarm algorithm to optimize the kernel function and penalty coefficient of support vector machine, and applied it in short-term wind power prediction. The simulation results show that the improved artificial fish swarm algorithm optimization support vector machine has a better effect on short-term wind power prediction.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd