• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于混沌优化粒子群BP神经网络的电力变压器故障诊断
Fault?diagnostics?of?power?transformer?based?on?chaos? particle?swarm?optimized?BP?neural?network
Received:May 25, 2015  Revised:September 27, 2015
DOI:
中文关键词: 混沌  粒子群  BP神经网络  变压器  故障诊断
英文关键词: Chaos,Particle Swarm Optimization,BP Neural Networks,transformer,fault diagnosis
基金项目:
Author NameAffiliationE-mail
gongmaofa Shandong University of Science and Technology sdgmf@163.com 
Liu Yanni* Shandong University of Science and Technology yanniliu99@163.com 
Wang Laihe Shandong University of Science and Technology  
Song Baoye Shandong University of Science and Technology 291590519@qq.com 
Zhong Wenqiang State Grid Shandong Pingdu Electric Power Company yanniliu99@163.com 
Hits: 2698
Download times: 717
中文摘要:
      摘要:针对电力变压器故障诊断问题,提出了一种基于混沌(Chaos)优化的粒子群(Particle Swarm Optimization)BP神经网络算法。该算法将混沌、粒子群和BP神经网络相结合,通过混沌粒子群算法寻优,得到BP神经网络的最优权值和阈值初始值,然后进行网络训练和测试。利用了混沌算法的遍历性和对初始值敏感的特点,对粒子群算法进行了参数优化,引入了早熟判断机制,并在早熟状态时进行了混沌扰动,使算法后期不易陷入局部最优。通过实例训练与测试表明,CPSO-BP神经网络算法在变压器故障诊断方面有较好的的效果。
英文摘要:
      Abstract:This paper proposes a BP neural network algorithm based on chaos particle?swarm?optimization, in order to solve power transformer fault diagnosis problem.This algorithm combined chaos ,particle swarm and the BP neural network,through chaos particle swarm optimization algorithm to obtain the optimal weights and the initial value of the threshold value of BP neural network, then take the network training and testing.The algorithm takes advantage of chaos's characteristic of ergodicity and sensitive to the initial values, to optimize the parameters of particle swarm algorithm,and imported early judgment mechanism,and in order to avoid the algorithm easily falling into local optimum,the algorithm took chaotic disturbance at the precocious state.The training and testing examples suggest that CPSO-BP neural network algorithm has better effect in transformer fault diagnosis.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd