• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
变压器振动信号模态特征提取及分析
Modal Feature Extraction and Analysis of Transformer Vibration Signal
Received:May 25, 2015  Revised:May 25, 2015
DOI:
中文关键词: 绕组故障  集合经验模态分解  本征模式函数  相关系数  特征矢量
英文关键词: wingding fault, ensemble empirical mode decomposition, intrinsic mode function, correlation coefficient, feature vector
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目)
Author NameAffiliationE-mail
ding qiao lin North China Electric Power University dingqiaolindql@yahoo.com 
zhao bo* North China Electric Power University jop20081007@126.com 
zhang ke North China Electric Power University  
Hits: 1961
Download times: 842
中文摘要:
      针对变压器故障情况下振动信号具有非平稳、非线性的特点,本文提出了利用集合经验模态分解(ensemble empirical mode decomposition method, EEMD)变压器振动信号的本征模式函数(intrinsic mode function, IMF)选择方法。该方法通过计算变压器原振动信号与分解后的本征模式函数的归一化相关系数来选取有效分量。再利用筛选出的本征模式函数构造特征矢量,将其作为变压器绕组状态识别的依据。实验结果证明了该方法可准确诊断变压器绕组的故障。
英文摘要:
      In order to extract effectively the characteristics of every condition vibration signal for transformer, a sensitive Intrinsic Mode Function (IMF) selection algorithm which based on Ensemble Empirical Mode Decomposition (EEMD) is proposed. First, the transformer vibration signal is decomposed by using EEMD, and the sensitive components of obtained IMFs are extracted by using correlation coefficient. Then, the feature vector is constructed with the IMF energy entropy, which is then used as a criterion for the transformer winding state identification. The experimental results verify the validity of the method for fault diagnosis of transformer winding.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd