• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于GRNN神经网络的变压器励磁涌流识别方法
A method to identify inrush current of transformer based on GRNN neural network
Received:June 01, 2015  Revised:November 07, 2015
DOI:
中文关键词: 广义回归神经网络  变压器  励磁涌流  差动保护
英文关键词: GRNN, transformer, magnetizing inrush current, differential protection
基金项目:
Author NameAffiliationE-mail
Zhang Xiaofan College of Electrical Engineering and Automation,Fuzhou University 1290815000@qq.com 
Lan Sheng* College of Electrical Engineering and Automation,Fuzhou University lansheng71@163.com 
Hits: 2155
Download times: 610
中文摘要:
      为了提高变压器差动保护识别励磁涌流与内部故障电流的能力,本文提出一种基于广义回归神经网络(GRNN)的变压器励磁涌流识别方法。首先通过全波傅里叶算法求得差动电流的特征量作为训练样本,然后利用交叉验证法寻找出GRNN神经网络的扩展常数spread的最优值,同时也计算出训练样本的最佳输入、输出值。由这些参数构建出识别励磁涌流的神经网络,仿真结果表明:GRNN神经网络收敛性好,运算速度快,并且预测输出精度非常高,能准确、有效、快速的识别出励磁涌流与内部故障电流。
英文摘要:
      In order to improve the ability of transformer differential protection to identify inrush current and internal fault current, a new method based on generalized regression neural network (GRNN) is proposed. First use the full wave Fourier algorithm calculated differential current characteristics as training samples, then use the cross validation method to find out spread parameter’s optimal value of the GRNN neural network, meanwhile the best input and output value of the training sample are calculated. A neural network for identifying inrush current is constructed by these parameters, the simulation results show that: the GRNN neural network has a good convergence, fast calculation and prediction output precision is very high, can accurate, effective and rapid identification of inrush current and internal fault current.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd