• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
类均值核主元法在GIS局部放电模式识别中的应用研究
GIS Partial Discharge Pattern Recognition Research Based on Class Kernel Mean Principal Component Analysis
Received:June 24, 2015  Revised:November 09, 2015
DOI:
中文关键词: 气体绝缘组合电器  局部放电  信息无损降维  特征提取  模式识别
英文关键词: gas insulated switchgear  partial discharge  non-information loss dimension reduction  feature extraction  pattern recognition
基金项目:国家高技术研究发展计划(863 计划)资助项目(2011AA05A121)
Author NameAffiliationE-mail
He Ying* China Electric Power Research Institute powercapacitor@163.com 
Hua Zheng Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense, North China Electric Power University hz5552@163.com 
Hou Zhijian Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense, North China Electric Power University dunkey@yeah.net 
wang zhaomeng Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense, North China Electric Power University wangzhaomeng90@163.com 
Hits: 1853
Download times: 652
中文摘要:
      GIS局部放电的模式识别对于评估其运行状态、确定检修策略具有重要意义。论文设计了4种典型的GIS局部放电模型,并通过实验建立了相应的局部放电超高频信号图谱数据库,然后根据信号特点提取了原始特征量,由于原始特征量维数较高,不利于模式识别,因此论文引入类均值核主元分析法,首先求出各类映射数据的类均值矢量,然后根据建立的类均值核矩阵建立类均值核主元算法。研究结果表明,该方法得到的特征量涵盖原始样本中的全部信息,并且维数低于绝缘缺陷种类数,能够实现信息的无损降维。
英文摘要:
      GIS partial discharge pattern recognition is an important part of its state evaluation, author has designed four kinds of typical partial discharge models in laboratory, then established corresponding UHF signal mapping database through the experimental method, and also extracted the original feature parameters; because the original characteristic dimension is high, which is bad for pattern recognition, based on this, the article uses a species mean kernel principal component analysis method, it mapped the partial discharge original data samples to high-dimensional feature space, at first,it calculate all kinds of class mean vector data, and then build the class average kernel matrix, at last,the class kernel mean principal component analysis algorithm is established. Results show that characteristic of this method contained all the information of the original data, and dimension is less than GIS insulation defect category numbers, and it can realize data dimension reduction without information loss, which improve the pattern recognition rate.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd