• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
两种基于自适应神经模糊推理系统的风功率预测方法
Two Wind Power Prediction Methods Based on Adaptive Neuro-fuzzy Inference System
Received:June 26, 2015  Revised:June 26, 2015
DOI:
中文关键词: 风电功率  自适应神经模糊推理系统  风速  风速-功率传变特性
英文关键词: wind power, adaptive neuro-fuzzy inference system, wind speed, wind speed-power transformation
基金项目:国家重点基础研究发展计划项目(973计划)(2013CB228201);国家自然科学基金(51307017);吉林省产业技术研究与开发项目(2014Y124)。
Author NameAffiliationE-mail
YANG Mao School of Electrical Engineering,Northeast Dianli University yangmao820@163.com 
DongJuncheng* Northeast Dianli University 814968539@qq.com 
Hits: 1648
Download times: 750
中文摘要:
      随着风电渗透率的持续增长,风电功率预测的研究和应用变得非常重要,它将提高电网的安全性、稳定性和接纳能力。该文分别对基于风速预测和基于功率预测的两种风功率预测方法进行了分析,并建立了ANFIS(自适应神经模糊推理系统)预测模型。利用吉林省西部某风电场的实测数据基于ANFIS预测模型采用两种预测方法进行实时多步滚动预测,并与基于线性回归法、滑动平均法和持续法进行风电功率实时多步滚动预测得到的预测结果进行比较,结果表明前者的预测精度更高,说明了ANFIS预测模型的有效性,并发现基于功率预测的ANFIS预测方法的精度要高于基于风速预测的ANFIS预测方法。
英文摘要:
      With the growth of wind power penetration, the study and application of wind power prediction which could improve security, stability and receptiveness of the grids is of great importance. This paper analyses two prediction methods: one is based on wind speed prediction; another is based on wind power prediction. Then the ANFIS (adaptive neuro-fuzzy inference system) prediction model is established. Taking the real data from a wind farm in the west of Jilin province to do the real-time multi-step rolling wind power prediction under two methods based on ANFIS, and the results of it are compared with the results of the linear regression method, the moving average method and the persistence method. It is shown that the prediction accuracy of the ANFIS method is higher and the availability of ANFIS method can be proved. Further more, it also illustrates that the prediction accuracy of ANFIS method based on wind power prediction is better than ANFIS method based on wind speed prediction.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd