• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于随机森林的风机状态监测数据可视化研究
Data Visualization Research on Monitoring Data of Wind Turbines Based on Random Forest
Received:July 27, 2015  Revised:July 27, 2015
DOI:
中文关键词: 电力大数据  随机森林  风机状态监测  可视化  平行坐标
英文关键词: electric  power big  data, random  forests, monitoring  data of  wind turbines, visualization, parallel  coordinates
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目);吉林省科技厅重点科技攻关项目
Author NameAffiliationE-mail
Guo Xiaoli School of Information Engineering Northeast Dianli University Emilyqwer0602@163.com 
Wen Yanli* College of Information Engineering,Northeast Dianli University 348539277@qq.com 
Hits: 2223
Download times: 883
中文摘要:
      随着智能电网的不断推进,电网企业积累了大量的电网业务数据,可视化成为大数据挖掘分析的有效途径。本文选取了具有时序、多维、快速等特点的电网运行数据中的风电机组状态监测数据,针对其可视化存在直观性不强和交互性差的缺陷,提出基于随机森林的可视化技术。即首先对监测数据进行基于RF的特征变换,使数据在新特征空间的类可分性增强;然后采用主成分分析法对变换后的数据进行降维,将多维数据的关系信息变换到适合人类视觉认知的低维空间里;最后对数据在低维空间里采用散点图和平行坐标图进行可视化展示。实验结果表明,风机状态监测数据经过RF处理后,可视化效果良好,便于管理人员从整体上把握数据的集中特性、分布规律、发展趋势以及属性间的关系等信息,对提高风电机组的运行可靠性具有重要意义。
英文摘要:
      With the development of the smart grid, power grid enterprises have accumulated a large amount of business data, visualization has become an effective way for big data mining. The operating data in power grid has the characteristics of sequential, multidimensional and fast.Monitoring data of wind turbines is one part of it.The current monitoring data visualization of wind turbines suffers from poor interactivity and less intuitiveness. In this paper, a visualization method based on random forest is proposed.Firstly, random forest was used for feature transformation on monitoring data, which enhanced the separability in the new feature space. Then ,the principal component analysis (PCA) is adopted to reduce the dimension of transformed data , by which the relationship between the multidimensional data information is transformed into low dimensional space for human visual perception.Finally, the data in low dimensional space using a scatter diagram and parallel coordinates figure is displayed. The experimental results shows that the condition monitoring data of wind turbines processed with the random forest,has a good visual effect and it’s easy for the wind turbines manager to figure out the data characteristics, distribution, development trend and the relationship between attributes on the whole grasp.It’s of great significance to improve the running reliability of wind turbines.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd