• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于超椭球贝叶斯网络的配电系统可靠性评估
Distribution system reliability assessment based on hyper-ellipsoidal Bayesian network
Received:August 23, 2015  Revised:September 30, 2015
DOI:
中文关键词: 配电系统  可靠性  贝叶斯网络  超椭球模型  区间概率  证据理论
英文关键词: distribution system, reliability, Bayesian network, hyper-ellipsoidal model, interval probability, evidence theory
基金项目:
Author NameAffiliationE-mail
Ge Yi* School of Electrical and Information,Sichuan University niky1017@163.com 
Zhou Buxiang School of Electrical and Information,Sichuan University hiway_scu@126.com 
Hits: 2608
Download times: 913
中文摘要:
      针对配电系统实际运行中元件故障概率无法以精确值描述的问题,提出了一种将超椭球模型约束的元件故障区间概率与贝叶斯网络相结合的配电系统可靠性评估方法。该方法应用证据理论获取元件的信度函数和似真函数以得到初始故障区间概率;应用超椭球模型约束元件初始故障区间概率以得到贝叶斯网络分析中根节点区间概率;应用贝叶斯网络正向推理叶节点区间概率以得到配电系统的可靠性评估指标;应用贝叶斯网络反向推理负荷点故障条件下的根节点后验区间概率以得到系统薄弱环节。通过对IEEE-RBTS Bus 6 母线系统进行算例分析,证明了该方法适用于实际配电系统的可靠性评估。
英文摘要:
      Aiming at the problem that the components’ failure probability in actual operation of the distribution system can not be described by exact value, a reliability assessment method for distribution system based on hyper-ellipsoidal Bayesian network is proposed. Evidence theory is applied to obtain components’ belief function and plausibility function in order to get the initial fault interval probability. Hyper-ellipsoidal model is applied to restrict the initial fault interval probability in order to get the root nodes’ interval probability of Bayesian network. Bayesian network’s forward reasoning is applied to get the leaf nodes’ interval probability in order to get the reliability indices of distribution system. Bayesian network’s backward reasoning is applied to get the root nodes’ posterior interval probability in order to find the weakest part of the system. By analyzing the IEEE-RBTS 6 bus system, the method is proved to be applicable to the reliability assessment of the actual distribution system.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd