• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
智能电网用户侧信息隐私保护方法的研究与应用*
The Research and Application of smart grid user-side information privacy protection method
Received:September 30, 2015  Revised:November 03, 2015
DOI:
中文关键词: 数据分类处理  k-匿名  泛化  随机扰动  多敏感属性
英文关键词: disposal  different kinds  of data, k-annonmy,generalization,stochastic  disturbance,multi-sensitive  attributes
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目)
Author NameAffiliationE-mail
GUO Xiaoli Information engineering college of Northeast Dianli University 243589657@qq.com 
ZHANG Jiajia* Northeast Dianli University 414899263@qq.com 
Hits: 1451
Download times: 720
中文摘要:
      在智能电网的不断建设和发展过程中积累了大量的基础用电数据,这些数据不仅具有海量、高频、分散等特点,是时空、动态、关系等性质复杂的数据,而且数据之间存在关联性和相似性。因此,传统的隐私保护方法对电力数据保护会有较大的信息损失,时间损耗,本文基于数据分类处理的思想,提出支持多属性泛化的随机化的隐私保护方法对电力信息数据进行分级保护,将准标识符属性属性按照自底向上支持多属性泛化的算法处理,敏感属性进行随机化算法处理,生成保护后的新数据表。通过与广泛应用的MBF算法,GASCG算法进行实验比较得出结论,该方法可以极大的提高隐私保护的效率降低个人信息的损失并且数据的效用性大大提高。
英文摘要:
      A great deal of basic data in the development of electricity smart grid have been constructed .These data are not only massive, high-frequency, dispersion and the nature of time and space, dynamic, complex data relationships,but also there is relevance and comparability between the data.Therefore, the traditional method of privacy protection will cause greater imformation loss and time consumption.Based on the idea of data classification this paper proposed a method which can protect the power rating information.Bottom-up generalization the quasi-identifier attributes, and randomized sensitive attributes,then generate a new data table after protection.The experiment results show that compared with the widely used algorithm MBF and GASCG,the method can greatly improve the efficiency of the privacy protection while reduce the less personal information and the effectiveness of data is greatly increased.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd