• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于正态云模型&改进贝叶斯分类器的变压器故障诊断
Transformer Fault Diagnosis Based on Normal Cloud Model & Improved Bayesian Model
Received:October 15, 2015  Revised:March 09, 2016
DOI:
中文关键词: 数据挖掘  变压器  油色谱  故障诊断  云模型  关联规则  贝叶斯分类器
英文关键词: data mining  transformer  chromatography  fault diagnosis  cloud model  association rules  Bayes classifier
基金项目:
Author NameAffiliationE-mail
zhangzhongyuan North China Electric Power University 15188935175@163.com 
linzhifeng* North China Electric Power University 15188935175@163.com 
liudong North China Electric Power University liudong52897@163.com 
Huang Jingli Shanxi Electric Power Corporation Metrological Center huangjingli2008@163.com 
Hits: 1796
Download times: 581
中文摘要:
      在基于油色谱数据的变压故障诊断中,一般数据挖掘方法存在数值区域划分过硬,且未考虑边界元素隶属的随机性和模糊性的问题。针对该问题,本文应用正态云模型对油色谱数据集进行预处理,同时云模型对数据集的精简也提高了关联规则挖掘的效率。为了解决朴素贝叶斯分类器中对各属性独立的假设不符合实际情况这一问题,本文引入关联规则森林表示法和属性联合概率算法,改进了朴素贝叶斯分类器,建立了基于正态云模型&改进贝叶斯分类器的变压器故障诊断模型,通过与其他模型的对比及实例验证,证明了该方法的有效性。
英文摘要:
      In order to solve the problem of data mining in diagnosing transformer fault, that data of dissolved gas-in-oil is divided without considering the randomness and fuzziness, Cloud model is applied. The efficiency of mining association rules is also improved through Cloud model; For the assumption in Naive Bayes Classifier is not conformed to the actual situation, An association rule forest and a method of the joint probability calculated is applied to improve Naive Bayes Classifier. The new Bayes Classifier is proved to be practical in the diagnosis of transformer by comparing with other classifier and testing example.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd