• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
配电网大数据应用综述
Overview of big data application in distribution network
Received:October 26, 2015  Revised:April 17, 2016
DOI:
中文关键词: 智能配电网  配电自动化  配电网  需求侧管理  大数据
英文关键词: smart  grid, distribution  automation, distribution  network, demand-side  management, big  data
基金项目:河北省自然科学资助(No.F2015502047)。
Author NameAffiliationE-mail
ZHANG Tiefeng School of Electric and Electronic Engineering,North China Electric Power University,Baoding,Hebei ncepuztf@126.com 
LIANG Sibo* School of Electric and Electronic Engineering,North China Electric Power University,Baoding,Hebei 13400436899@163.com 
GU Jian-wei Hangzhou Power Supply Company gu_jianwei@126.com 
Hits: 2573
Download times: 554
中文摘要:
      在智能电网的配电侧,安装了难以计数的传感、采集和测量装置的配电自动化系统,含有电网拓扑、设备运维等信息的高级配电管理系统以及与用户互动的需求侧管理系统等多个来源的数据汇集在一起,构成了配电网的大数据环境,这为企业通过挖掘应用支持配网运营决策提供了条件和挑战。本文对配网大数据的应用进行了综述,介绍了配网大数据的概念、发展和特点,以及大数据在智能用电、数据驱动的新型用电预测技术和协同调度三个方面的潜在应用前景,重点介绍了基于配网大数据的电网运营驾驶舱技术,同时也阐述了云计算、物联网、Hadoop等大数据技术并介绍了相关应用实例。此外,还阐述了配网大数据数据处理的实时性、异构多数据源整合和适用于不同结构特征配网大数据的态势感知与知识提取技术三个技术难点,并对配网大数据的发展进行了展望。
英文摘要:
      In the smart grid distribution, distribution automation systems with countless sensors, collecting and measuring devices, advanced distribution management system including network topology,equipment operation and maintenance information,demand-side management system interacting with the users and many other data sources integrated together to form the distribution big data environment, which provides the basis of supporting decision for distribution utilities through mining, also brings challenges. In this paper, the big data applications are summarized, the concepts, development and characteristics of the big data, and the potential applications of big data including smart energy use, data driven load prediction technology and collaborative scheduling are introduced. And power grid operation cockpit based on big data technology is presented as well asScloud computing, Internet of things and Hadoop with the example applications1. In addition, this paper describes the real-time data processing of big data in distribution network, heterogeneous multi-source data integration, situation awareness with different structural characteristics of distribution big data and knowledge extraction technology are presented as well as the development of big data in distribution network.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd