• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
粒子群优化小波包回声状态网的短期电力负荷预测
Short-term load forecast based on wavelet packet echo state network optimized by particle swarm optimization
Received:November 04, 2015  Revised:December 03, 2015
DOI:
中文关键词: 粒子群  小波包分解  回声状态网  电力负荷  短期预测
英文关键词: particle swarm optimization  wavelet packet decomposition  echo state network  power load  short-term forecast
基金项目:国家自然科学基金(No.61203056),淮安市科技支撑项目(No.HAG2014001)
Author NameAffiliationE-mail
ZHOU Hongbiao* Faculty of Automation,Huaiyin Institute of Technology,Huai’an hyitzhb@163.com 
WANG Le School of Electrical and Electronics Engineering,East China Jiaotong University 15189544918@163.com 
BU Feng Faculty of Automation,Huaiyin Institute of Technology,Huai’an 15189544918@163.com 
Hits: 2210
Download times: 821
中文摘要:
      精确的短期电力负荷预测是电力生产优化调度和安全稳定运行的重要保证,是智能电网建设的重要一环。为提高模型的预测精度,提出了一种基于粒子群优化小波包回声状态神经网络的短期电力负荷预测方法。首先利用多分辨率分析小波包分解理论对负荷数据进行分解和重构,建立小波包回声状态网预测模型;然后,利用粒子群算法对预测模型储备池中的参数进行优化。实验结果表明:针对短期电力负荷动态时间序列数据,与BP、Elman、传统ESN等网络相比,PSO-WPESN网络的预测精度、稳定性和泛化能力都得到明显增强,尤其是能在一定程度上缓解由于输出矩阵过大造成ESN存在病态解的弊端。
英文摘要:
      Accurate short-term power load forecasting is an important guarantee for power production scheduling and safe and stable operation. It is also an important part in the construction of smart grid. In order to improve the prediction accuracy of the model, a new wavelet packet echo state network optimized by particle swarm optimization is proposed in this paper to predict the short-term power load. Firstly, the load data is decomposed and reconstructed by wavelet packet theory, and wavelet packet echo state network prediction model is established. Then, the prediction model parameters of dynamic neurons reservoir is optimized by particle swarm optimization algorithm. The results show that the forecasting accuracy, stability and generalization ability of PSO-WPESN have been significantly enhanced, compared with BP, Elman, traditional ESN, especially eases ESN disadvantages caused by excessive sick solution.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd