• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于组合优化LOWESS的电能量数据缺失处理方法
Missing electricity data processing method based on combined optimization LOWESS
Received:November 23, 2015  Revised:April 07, 2016
DOI:
中文关键词: 缺失数据处理,电力计量,LOWESS回归,组合优化
英文关键词: missing electricity data ,electric energy metering,LOWESS regression,combinatorial optimization
基金项目:
Author NameAffiliationE-mail
CHEN Jun* Guangxi Power Grid Electric Power Research Institute chen_j.sy@gx.csg.cn 
LONG Dong Guangxi Power Grid Electric Power Research Institute long_d.sy@gx.csg.cn 
YANG Zhou Guangxi Power Grid Electric Power Research Institute yang_z.sy@gx.csg.cn 
WEI Xing Qiu Guangxi Power Grid Electric Power Research Institute wei_xq.sy@gx.csg.cn 
Hits: 1795
Download times: 842
中文摘要:
      针对实际电能量数据的统计分布特性,考虑到均值替代等通常方法对电能量数据缺失的处理效果欠佳,LOWESS模型的估计偏差受限于其给定的窗宽和拟合阶数,本文提出一种基于预测误差最小化的参数组合优化LOWESS回归模型的电能量数据缺失自动处理方法,通过对比固定窗口和阶数在非平稳的电能量数据上的预测效果,研究参数组合优化LOWESS模型的准确性、适应性以及相对优势性。通过实际数据验证,该模型能适应电能量数据不同数据分布、不同缺失比例等情况,预测准确率高,具有一定的实用参考价值。
英文摘要:
      According to the statistical distribution characteristics of the actual electric energy data, and considering the treatment effect mean substitution method of energy loss data is usually not satisfactory,The estimation error of LOWESS model is limited by its given window width and fitting order, It is proposed a LOWESS regression model of the electric energy data deletion optimization based on prediction error minimization parameters automatic processing method. By comparing the fixed window and order number in the non stationarity of the electric energy data on the prediction effect and study parameters optimization LOWESS model accuracy, adaptability and comparative advantage. Through the actual data validation, the model can adapt to different data distribution of electric energy data, different loss ratio and so on, the prediction accuracy is high, it has certain practical reference value.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd