• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于VPMCD的变压器局部放电模式识别
Pattern Recognition of Power Transformer Partial Discharge Signals Based on VPMCD
Received:January 27, 2016  Revised:April 09, 2016
DOI:
中文关键词: 变量预测模型  变压器  局部放电  模式识别
英文关键词: variable predictive model  transformer  partial discharge  pattern recognition
基金项目:
Author NameAffiliationE-mail
Zhang Meng* State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University zhangmzwj@163.com 
Zhu Yongli State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University yonglipw@163.com 
Jia Yafei State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University jiayafeiyanshan@163.com 
zhangning North China Electric Power University(Bao Ding) 1552252959@qq.com 
zhangyuanyuan North China Electric Power University(Bao Ding) 965362405@qq.com 
Hits: 2240
Download times: 394
中文摘要:
      识别局部放电的类型对变压器状态评估十分重要。文中构造了四种变压器局部放电实物模型,从放电信号中提取18个统计特征量,使用基于变量预测模型的模式识别方法(Variable Predictive Model based Class Discriminate method,VPMCD)完成局部放电信号的分类。对比实验结果表明,VPMCD方法在识别率和计算效率均高于BP神经网络。
英文摘要:
      Partial discharge pattern recognition is very important for state evaluation of transformer。In this paper 18 types of statistical characteristics are extracted from PD pulse sequence which collected from four kinds of typical partial discharge models in laboratory,and partial discharge patterns are recognized by Variable Predictive Model based Class Discriminate method(VPMCD)。Comparative analysis results demonstrate that VPMCD algorithm gains more recognition rate and better computational efficiency than BP Neural Network。
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd