• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于数据挖掘的工业用户用电行为分析
Industrial Users of Electricity Behavior Analysis Based on Data Mining
Received:August 19, 2016  Revised:October 17, 2016
DOI:
中文关键词: 工业用户  K-means聚类算法  初始聚类数  初始聚类中心  用电模式提取  用电行为分析
英文关键词: Industrial users  K-means algorithm  initial cluster numbers  initial cluster centers  electricity pattern extraction  electricity behavior analysis
基金项目:国家电网公司科技项目资助(520940150010; 52094015001L)
Author NameAffiliationE-mail
XU Lei* College of Electric Engineering,Shanghai University of Electric Power s1291598142@163.com 
YANG Xiu College of Electric Engineering,Shanghai University of Electric Power yangxiu712102@126.com 
ZHANG Meixia College of Electric Engineering,Shanghai University of Electric Power zmx19790612@sina.com 
Hits: 2459
Download times: 791
中文摘要:
      本文以上海市部分地区工业用户为研究对象,利用数据挖掘技术分析其用电行为。根据用户档案采集和整合用电数据,同时对数据进行修复和归一化预处理;综合考虑聚类数的确定及初始聚类中心的选择这两个因素,对K-means算法进行优化;利用优化的算法对用户负荷曲线分类并提取特征曲线,分析其用电行为典型特征,并与传统的K-means算法进行比较,同时引入相关指标检验聚类效果。结果表明,采用优化的K-means聚类算法能准确实现不同用户类型的分类识别功能,可以更加准确有效的进行用户用电行为的分析。
英文摘要:
      In this paper, the Shanghai industrial users in some areas is studied using data mining techniques to analyze its behavior of electricity. According to user profile data acquisition and integration of electricity data, the data is repaired and normalized. Considering two factors that the number of clusters and selection of the initial cluster centers to improve the K-means algorithm, the improved K-means algorithm is used in data classification to extract all types of users clustering characteristic curve,then analyze the typical characteristics of behavior of electricity, and compared with the traditional K-means algorithm and relevant indicators is introduced to test clustering effect. The results show that improved K-means clustering algorithm can realize the different types of user classification function and can be more accurately and effectively analyze the behavior of users of electricity .
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd