• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于动态阈值的变压器异常状态检测
Abnormal Condition Detection of Power Transformer Based onDynamical Threshold
Received:November 14, 2016  Revised:December 02, 2016
DOI:
中文关键词: 动态阈值  贝叶斯网络  电力变压器  异常状态
英文关键词: Dynamical threshold  Bayesian network  power transformer  abnormal condition.
基金项目:国家电网公司科技项目 (521997140005)
Author NameAffiliationE-mail
LIU Yong State Grid Sichuan Electric Power Company 810445389@qq.com 
YIN Haojie* Southwest jiaotong University yinhaojie810445389@163.com 
Zhang Xinghai State Grid Sichuan Electric Power Company 810445389@qq.com 
FAN Songhai State Grid Sichuan Electric Power Company 810445389@qq.com 
Yan Lei State Grid Sichuan Electric Power Company 810445389@qq.com 
Gao Bo Southwest jiaotong University 810445389@qq.com 
Hits: 1865
Download times: 634
中文摘要:
      为提升电力变压器状态检修效率和异常状态检测、预警能力,考虑变压器在线监测数据、检修数据及设备本体数据间的相关性,提出了一种基于动态阈值的变压器异常运行状态检测方法,通过构造动态预测模型对特征参数基线进行刻画。在此基础上,采用贝叶斯网络推算变压器运行状态,以概率大小判断变压器可能状态,并基于实际运行数据对所提方法进行了验证分析。计算结果表明文中方法可对异常检测数据有效检测,能够对变压器异常状态准确识别和预测。
英文摘要:
      To improve the efficiency of condition based maintenance and the capability of abnormal condition detection and warning ability, a new method which based on dynamical threshold for abnormal operation condition detection was proposed. Baselines of the parameters are depicted through the establishment of dynamical prediction model. On such basis, the Bayesian network is utilized for calculating the operating state of transformer, which uses the probability to decide its potential condition. Finally, the proposed method is verified using the field acquired data. Numerical simulation results show that the proposed method in this paper can detect the abnormal state of the power transformer effectively and which can also provide a warning of those possible abnormal conditions.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd