• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于spark框架的能源互联网电力能源大数据清洗模型
Energy data cleaning model for Energy Internet based on Spark framework
Received:February 23, 2017  Revised:February 23, 2017
DOI:
中文关键词: 能源大数据  数据清洗  异常识别  异常修正  Spark框架
英文关键词: Big energy data, data cleaning, exception recognition, exception correction, Spark framework
基金项目:国家自然科学基金项目( 重点项目)
Author NameAffiliationE-mail
quzhaoyang Northeast Dianli University 332856891@163.com 
张艺竞* Northeast Dianli University zyj2017@qq.com 
wangyongwen Northeast Electric Power University isadle@163.com 
zhaoying Northeast Electric Power University 834812219@qq.com 
Hits: 1892
Download times: 602
中文摘要:
      对能源大数据清洗可提高能源大数据质量的正确性、完整性、一致性、可靠性。针对能源大数据清洗过程中的提取统一异常检测模式困难、异常数据修正连续性及准确性低下等问题,提出了一种基于Spark框架的能源能源大数据清洗模型。首先基于改进CURE聚类算法获取正常簇;其次,实现了正常簇的边界样本获取方法,并设计了基于边界样本的异常识别算法;最后通过指数加权移动平均数实现了异常数据修正。通过对某风电场风力发电监测数据进行了数据清洗实验分析,验证了清洗模型的高效性、准确性。
英文摘要:
      Big energy data cleaning can improve the quality of energy large data accuracy, completeness, consistency, and reliability. Big Data for energy extraction cleaning process difficult unified anomaly detection mode, continuous and abnormal data correction accuracy is low and other issues, we proposed a framework based Spark Energy clean energy large data model. First, based on improved CURE clustering algorithm to obtain normal cluster; secondly, to achieve a normal cluster boundary sample acquisition method, and designed based anomaly recognition algorithm boundary samples; finally weighted moving average realized the abnormal data corrected by the index. By a wind farm wind power generation monitoring data analysis of experimental data cleansing, verification of the cleaning efficiency of the model accuracy.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd