• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于Copula理论的风电功率缺失数据补齐方法研究
Study on wind power data completion method based on copula theory
Received:February 23, 2017  Revised:February 23, 2017
DOI:
中文关键词: 风电功率  Copula理论  相关性分析  数据补齐
英文关键词: wind power  Copula theory  correlation analysis  data completion
基金项目:国家重点基础研究发展计划项目(973计划)(2013CB228201);国家自然科学(51307017);吉林省产业技术与专项开发项目(2014Y124)
Author NameAffiliationE-mail
Yang Mao* School of Electrical Engineering,Northeast Electric Power University yangmao820@163.com 
Ma Jian School of Electrical Engineering,Northeast Electric Power University 1982759693@qq.com 
Hits: 1839
Download times: 748
中文摘要:
      风电数据的完整性对风电功率的准确预测以及风能的利用具有重要意义。该文从风电场中风机输出功率的相关性分析,提出利用Copula理论建立不同风机输出功率的联合概率分布模型的方法。利用实测的风电功率数据,采用非参数核密度估计法估计风机输出功率的概率分布。以Kendall秩相关系数作为相关性测度。利用风机输出功率的相关性对缺失数据进行补齐。仿真实验说明补齐数据的准确率和平均相对误差得到较好的效果,能够有效提高补齐数据的质量。
英文摘要:
      The integrity of wind data is of great significance for the accurate prediction of wind power and the utilization of wind energy. Based on the correlation analysis of the output power of the wind farm, this paper proposes a joint probability distribution model of different wind turbine output power by using Copula theory. By using the measured wind power data, the probability distribution of wind power output is estimated through the non parametric and density estimation method. Kendall rank correlation coefficient is used as the correlation measurement. The correlation between different wind turbines is used to complete missing data. Simulation experiments illustrate the accuracy and average relative error of completed data obtain good effect, and the quality of the completed data is improved effectively.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd