• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
一种应用小波系数GSM模型的混合傅里叶-小波电缆瓷套终端红外图像去噪方法
A Hybrid Fourier-wavelet De-noising Method for Infrared Image of Porcelain Sleeve Cable Terminal Using GSM Model for Wavelet Coefficients
Received:March 16, 2017  Revised:March 16, 2017
DOI:
中文关键词: 图像去噪,傅里叶变换,小波变换,GSM模型
英文关键词: image de-noising  Fourier transform  wavelet transform  Gaussians Scale Mixtures model
基金项目:
Author NameAffiliationE-mail
WU Ju-zhuo* Zhuhai Power Supply Bureau 793145171@qq.com 
NIU Hai-qing School of Electric Power,South China University of Technology 1140953017@qq.com 
Hits: 1640
Download times: 823
中文摘要:
      为有效去除红外图像白噪声,提高电气设备红外诊断准确性,本文采用一种混合傅里叶-小波去噪方法对电缆瓷套终端红外图像进行处理。该方法先在傅里叶域中进行初步去噪处理,而后在小波域中去除剩余噪声。在小波域中去噪时,考虑到小波系数的统计特性,采用GSM模型对小波系数进行建模。对电缆瓷套终端红外图像去噪试验表明,运用本文方法能够有效提高红外图像的去噪效果。
英文摘要:
      In order to remove the white noise of infrared image effectively and improve the accuracy of infrared diagnosis of electrical equipment, a hybrid Fourier-wavelet de-noising method is used to process the infrared image of porcelain bushing cable terminal in this paper. The main steps of the proposed method are as follows. The noisy image is first processed in the Fourier domain by using the Wiener filter. Then in wavelet domain, the wavelet coefficients are modeled by using the Gaussians Scale Mixtures model which considers the statistical properties of wavelet coefficients. Finally, the processed wavelet coefficients are used to reconstruct the signal and get the final de-noising image. Simulation results indicate that the infrared image de-noising effect can be effectively improved by using the de-noising method in this paper.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd