• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于PSO-LS-SVM的储罐底板缺陷量化方法研究
Research on quantification of defects on tank floor based on particle swarm optimization-least square support vector machine
Received:March 21, 2017  Revised:March 21, 2017
DOI:
中文关键词: 漏磁检测  粒子群算法  最小二乘支持向量机  缺陷量化
英文关键词: magnetic flux leakage detection, PSO, LS-SVM, defect sizing
基金项目:国家重大仪器设备开发专项-铁磁性材料缺陷三维漏磁成像检测仪
Author NameAffiliationE-mail
Cheng di State Key of Power Systems,Dept. of Electrical Engineering,Tsinghua University,Beijing 10084,China cheng-d15@mails.tsinghua.edu.cn 
Huang Songling* State Key of Power Systems,Dept. of Electrical Engineering,Tsinghua University,Beijing 10084,China huangsling@mail.tsinghua.edu.cn 
Zhao Wei State Key of Power Systems,Dept. of Electrical Engineering,Tsinghua University,Beijing 10084,China zhaowei@mail.tsinghua.edu.cn 
Wang Shen State Key of Power Systems,Dept. of Electrical Engineering,Tsinghua University,Beijing 10084,China wangshen@mail.tsinghua.edu.cn 
Hits: 1870
Download times: 585
中文摘要:
      为能准确量化油气储罐底板上的缺陷,本文提出一种最小二乘支持向量机缺陷量化方法,并以该方法模型建立了缺陷的三维漏磁场信号与缺陷的长度、宽度、深度之间的映射关系。为提高该方法对储罐底板缺陷的量化精度,采用粒子群算法对模型参数进行了优化。仿真结果及分析表明,与BP神经网络方法相比,结合了粒子群优化的最小二乘支持向量机缺陷量化方法的网络训练时间短、缺陷量化精度高,具有较强的工程应用优势。
英文摘要:
      This paper applies least square-support vector machine(LS-SVM) to quantify the defects on tank floor of oil and gas, this method build the relationship between the three-axial magnetic flux leakage(MFL) of defects and the length, width and depth of defects. In order to accurately quantify the defect, particle swarm optimization(PSO)is adopted to optimize the model parameter of LS-SVM. According to the simulation results, PSO-LS-SVM needs less training time and has better accuracy for the quantification of defects than BP neural network method, and PSO-LS-SVM has better application advantages on the engineering.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd