• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
含积分风险的电网经济调度研究*
Study on economic dispatch of power grid with integrated Wind Risk
Received:May 27, 2017  Revised:June 27, 2017
DOI:
中文关键词: 风力发电  经济调度  不确定性  积分风险  粒子群算法
英文关键词: wind power  economic dispatch  uncertainty  integral risk  particle swarm optimization algorithm
基金项目:国家自然科学基金(No.61273143,No.61472424),博士后基金(No.169349)
Author NameAffiliationE-mail
HAN Li* School of Electrical and Power Engineering,China University of Mining and Technology dannyli717@163.com 
LI Mingze School of Electrical and Power Engineering,China University of Mining and Technology cumt_lmz@163.com 
SHI Liping School of Electrical and Power Engineering,China University of Mining and Technology shiliping98@126.com 
Hits: 1685
Download times: 498
中文摘要:
      随着大规模风电机组的并网运行,风电的随机性和不确定性给含风电的电网调度带来新的挑战和要求。为了在电网调度中降低风电的随机性影响,本文首先通过对风电功率进行统计分析采用逐时分析的方法来绘制风电机组的功率频率曲线,得到动态的风电功率密度分布函数。然后将该分布函数引入到电网调度中,建立含积分风险的电网调度模型。为了解决求解该调度模型的优化问题了,本文引入遗传算法对骨干粒子群算法进行改进,提出了改进的骨干粒子群算法。最后通过IEEE30系统对本文模型进行了验证,并对含风电电网调度的风险和成本进行了分析。
英文摘要:
      With the large-scale wind power grid connected operation, the randomness and uncertainty of wind power bring new challenges and requirements to the power dispatching. In order to reduce the influence of random wind power in power dispatching, this paper through the wind power of hourly probability curve, the dynamic wind power probability distribution function(PDF). Then, the PDF is introduced into the scheduling, and the grid scheduling model based on integral risk cost is established. In order to solve problem of model, this paper introduces mutation crossover to improve the Bare-bone Particle Swarm Optimization algorithm, I-BBPSO. Finally, the rationality of the model is verified by IEEE30, and power dispatching with the risk and cost of the wind power are analyzed.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd