• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
基于决策树理论的风电功率实时预测方法
Real-time Wind Power Forecasting Method Based on Decision Tree Theory
Received:June 16, 2017  Revised:June 16, 2017
DOI:
中文关键词: 风电功率  实时预测  组合模型  序列特性  决策树
英文关键词: wind  power, real-time  prediction, combinatorial  model, sequence  property, decision  tree
基金项目:国家重点基础研究发展计划项目(973计划)(2013CB228201); 国家自然科学基金项目(51307017);国家重点研发计划项目课题(2016YFB0900101)
Author NameAffiliationE-mail
Yang Mao* Modern Power System Simulation Control Renewable Energy Technology Jilin Province key Laboratory Northeast Electric Power University yangmao820@163.com 
Zhai Guanqiang Modern Power System Simulation Control Renewable Energy Technology Jilin Province key Laboratory Northeast Electric Power University 374421104@qq.com 
Hits: 1729
Download times: 1001
中文摘要:
      风电功率的不确定性会对电网造成冲击,风电功率实时预测是缓解电网调频压力,保证电网稳定运行的重要手段。通过分析两种单一预测模型的特点,提出一种基于历史数据和NWP数据相结合的组合预测模型。分析历史数据的序列特征和适用的预测方法,建立决策树分类模型,在预测时通过实时数据序列特征分析,选择最佳预测方法。针对两不同风电场的数据进行预测分析,结果表明,组合模型能预测精度高于单一模型,通过决策树模型进行实时序列特征分析并选配最佳预测模型能有效提高预测精度。
英文摘要:
      Uncertainty of wind power will cause the impact to power grid. Wind power real-time forecasting can ease the power grid and ensure the stability of the grid. Based on the analysis of the characteristics of two kinds of single forecasting models, proposes a combined forecasting model based on historical data and NWP data. The sequence feature of the historical data and the applicable forecasting method are analyzed. The decision tree classification model is established. The best forecasting method is selected by real-time data sequence feature analysis. The results show that the combined model can forecast the accuracy higher than that of the single model. Real - time sequence feature analysis and matching the best forecasting model can improve the prediction accuracy by the decision tree model.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd