• HOME
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • Chinese
Site search        
文章摘要
一种基于改进的HHT短期风电功率预测方法
A method of short-term wind power prediction based on improved HHT
Received:July 08, 2017  Revised:July 08, 2017
DOI:
中文关键词: 短期风电功率  Hilbert-Huang变换  端点效应  组合预测
英文关键词: short-term wind power  Hilbert-Huang Transform  The endpoint effect  Combination forecast
基金项目:含分布式电源的配电网电能质量分析与治理方案研162102410071
Author NameAffiliationE-mail
ningkang* Zhengzhou University 363312747@qq.com 
liaoxiaohui Zhengzhou University liaoxiaohui0001@zzu.edu.cn 
Hits: 1672
Download times: 553
中文摘要:
      风电功率短期预测对于电力系统稳定性和电能质量的提高具有非常重要的意义。本文采取一种基于Hilbert-Huang变换风电的短期预测方法。首先,对经验模态分解(EMD)中原始数据存在的端点效应利用提出的延拓抑制方法进行了抑制,然后,用经验模态分解的方法将风电场历史功率数据分解得到了七个具有不同规律特征的分量,进行希尔伯特变换,并在对各个成分的特点分析的基础上分别搭建了不同的预测模型,然后结合多个预测模型对风电场历史功率数据进行组合预测。仿真实验预测结果表明该方法使得风电预测精度大大提高,具有很好的应用前景。
英文摘要:
      Wind power short-term forecast for power system stability and the improvement of power quality has very important significance. According to the existing prediction methods, the paper puts forward a kind of wind power short-term forecast method based on Hilbert Huang transform.First of all,using the continuation inhibition method that putting forward restrains the endpoint of the empirical mode decomposition existed in the original data.then using empirical mode decomposition method?resolve wind power history data and get seven different characteristics of the component,And on the basis of analyzing the characteristics of the components, respectively, sets up different prediction models and the Hilbert transform is performed.Then combining multiple prediction models forecast the wind power history data.Simulation results show that this method makes wind power prediction accuracy is greatly increased, and it has the very good application prospect.
View Full Text   View/Add Comment  Download reader
Close
  • Home
  • About Journal
    • Historical evolution
    • Journal Honors
  • Editorial Board
    • Members of Committee
    • Director of the Committee
    • President and Editor in chief
  • Submission Guide
    • Instructions for Authors
    • Manuscript Processing Flow
    • Model Text
    • Procedures for Submission
  • Academic Influence
  • Open Access
  • Ethics&Policies
    • Publication Ethics Statement
    • Peer Review Process
    • Academic Misconduct Identification and Treatment
    • Advertising and Marketing
    • Correction and Retraction
    • Conflict of Interest
    • Authorship & Copyright
  • Contact Us
  • 中文页面
Address: No.2000, Chuangxin Road, Songbei District, Harbin, China    Zip code: 150028
E-mail: dcyb@vip.163.com    Telephone: 0451-86611021
© 2012 Electrical Measurement & Instrumentation
黑ICP备11006624号-1
Support:Beijing Qinyun Technology Development Co., Ltd